faqs.org - Internet FAQ Archives

RFC 4172 - iFCP - A Protocol for Internet Fibre Channel Storage


Or Display the document by number




Network Working Group                                           C. Monia
Request for Comments: 4172                                    Consultant
Category: Standards Track                                  R. Mullendore
                                                                  McDATA
                                                           F. Travostino
                                                                  Nortel
                                                                W. Jeong
                                                         Troika Networks
                                                              M. Edwards
                                                       Adaptec (UK) Ltd.
                                                          September 2005

    iFCP - A Protocol for Internet Fibre Channel Storage Networking

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document specifies an architecture and a gateway-to-gateway
   protocol for the implementation of fibre channel fabric functionality
   over an IP network.  This functionality is provided through TCP
   protocols for fibre channel frame transport and the distributed
   fabric services specified by the fibre channel standards.  The
   architecture enables internetworking of fibre channel devices through
   gateway-accessed regions with the fault isolation properties of
   autonomous systems and the scalability of the IP network.

Table of Contents

   1.  Introduction..................................................  4
       1.1.  Conventions used in This Document.......................  4
             1.1.1.  Data Structures Internal to an Implementation...  4
       1.2.  Purpose of This Document................................  4
   2.  iFCP Introduction.............................................  4
       2.1.  Definitions.............................................  5
   3.  Fibre Channel Communication Concepts..........................  7
       3.1.  The Fibre Channel Network...............................  8

       3.2.  Fibre Channel Network Topologies........................  9
             3.2.1.  Switched Fibre Channel Fabrics.................. 11
             3.2.2.  Mixed Fibre Channel Fabric...................... 12
       3.3.  Fibre Channel Layers and Link Services.................. 12
             3.3.1.  Fabric-Supplied Link Services................... 13
       3.4.  Fibre Channel Nodes..................................... 14
       3.5.  Fibre Channel Device Discovery.......................... 14
       3.6.  Fibre Channel Information Elements...................... 15
       3.7.  Fibre Channel Frame Format.............................. 15
             3.7.1.  N_PORT Address Model............................ 16
       3.8.  Fibre Channel Transport Services........................ 17
       3.9.  Login Processes......................................... 18
   4.  The iFCP Network Model........................................ 18
       4.1.  iFCP Transport Services................................. 21
             4.1.1.  Fibre Channel Transport Services Supported by
                     iFCP............................................ 21
       4.2.  iFCP Device Discovery and Configuration Management...... 21
       4.3.  iFCP Fabric Properties.................................. 22
             4.3.1.  Address Transparency............................ 22
             4.3.2.  Configuration Scalability....................... 23
             4.3.3.  Fault Tolerance................................. 23
       4.4.  The iFCP N_PORT Address Model........................... 24
       4.5.  Operation in Address Transparent Mode................... 25
             4.5.1.  Transparent Mode Domain ID Management........... 26
             4.5.2.  Incompatibility with Address Translation Mode... 26
       4.6.  Operation in Address Translation Mode................... 27
             4.6.1.  Inbound Frame Address Translation............... 28
             4.6.2.  Incompatibility with Address Transparent Mode... 29
   5.  iFCP Protocol................................................. 29
       5.1.  Overview ............................................... 29
             5.1.1.  iFCP Transport Services......................... 29
             5.1.2.  iFCP Support for Link Services.................. 30
       5.2.  TCP Stream Transport of iFCP Frames..................... 30
             5.2.1.  iFCP Session Model.............................. 30
             5.2.2.  iFCP Session Management......................... 31
             5.2.3.  Terminating iFCP Sessions....................... 39
       5.3.  Fibre Channel Frame Encapsulation....................... 40
             5.3.1.  Encapsulation Header Format..................... 41
             5.3.2.  SOF and EOF Delimiter Fields.................... 44
             5.3.3.  Frame Encapsulation............................. 45
             5.3.4.  Frame De-encapsulation.......................... 46
   6.  TCP Session Control Messages.................................. 47
       6.1.  Connection Bind (CBIND)................................. 50
       6.2.  Unbind Connection (UNBIND).............................. 52
       6.3.  LTEST -- Test Connection Liveness....................... 54
   7.  Fibre Channel Link Services................................... 55
       7.1.  Special Link Service Messages........................... 56
       7.2.  Link Services Requiring Payload Address Translation..... 58

       7.3.  Fibre Channel Link Services Processed by iFCP........... 61
             7.3.1.  Special Extended Link Services.................. 63
             7.3.2.  Special FC-4 Link Services...................... 83
       7.4.  FLOGI Service Parameters Supported by an iFCP Gateway... 84
   8.  iFCP Error Detection.......................................... 86
       8.1.  Overview................................................ 86
       8.2.  Stale Frame Prevention.................................. 86
             8.2.1.  Enforcing R_A_TOV Limits........................ 86
   9.  Fabric Services Supported by an iFCP Implementation........... 88
       9.1.  F_PORT Server........................................... 88
       9.2.  Fabric Controller....................................... 89
       9.3.  Directory/Name Server................................... 89
       9.4.  Broadcast Server........................................ 89
             9.4.1.  Establishing the Broadcast Configuration........ 90
             9.4.2.  Broadcast Session Management.................... 91
             9.4.3.  Standby Global Broadcast Server................. 91
   10. iFCP Security................................................. 91
       10.1. Overview................................................ 91
       10.2. iFCP Security Threats and Scope......................... 92
             10.2.1. Context......................................... 92
             10.2.2. Security Threats................................ 92
             10.2.3. Interoperability with Security Gateways......... 93
             10.2.4. Authentication.................................. 93
             10.2.5. Confidentiality................................. 93
             10.2.6. Rekeying........................................ 93
             10.2.7. Authorization................................... 94
             10.2.8. Policy Control.................................. 94
             10.2.9. iSNS Role....................................... 94
       10.3. iFCP Security Design.................................... 94
             10.3.1. Enabling Technologies........................... 94
             10.3.2. Use of IKE and IPsec............................ 96
             10.3.3. Signatures and Certificate-Based Authentication. 98
       10.4. iSNS and iFCP Security.................................. 99
       10.5. Use of iSNS to Distribute Security Policy............... 99
       10.6. Minimal Security Policy for an iFCP Gateway............. 99
   11. Quality of Service Considerations.............................100
       11.1. Minimal Requirements....................................100
       11.2. High Assurance..........................................100
   12. IANA Considerations...........................................101
   13. Normative References..........................................101
   14. Informative References........................................103
   Appendix A.  iFCP Support for Fibre Channel Link Services.........105
       A.1.  Basic Link Services.....................................105
       A.2.  Pass-Through Link Services..............................105
       A.3.  Special Link Services...................................107
   Appendix B.  Supporting the Fibre Channel Loop Topology...........108
       B.1.  Remote Control of a Public Loop.........................108
   Acknowledgements..................................................109

1.  Introduction

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC 2119
   [RFC2119].

   Unless specified otherwise, numeric quantities are given as decimal
   values.

   All diagrams that portray bit and byte ordering, including the
   depiction of structures defined by fibre channel standards, adhere to
   the IETF conventions whereby bit 0 is the most significant bit and
   the first addressable byte is in the upper left corner.  This IETF
   convention differs from that used for INCITS T11 fibre channel
   standards, in which bit 0 is the least significant bit.

1.1.1.  Data Structures Internal to an Implementation

   To facilitate the specification of required behavior, this document
   may define and refer to internal data structures within an iFCP
   implementation.  Such structures are intended for explanatory
   purposes only and need not be instantiated within an implementation
   as described in this specification.

1.2.  Purpose of This Document

   This is a standards-track document that specifies a protocol for the
   implementation of fibre channel transport services on a TCP/IP
   network.  Some portions of this document contain material from
   standards controlled by INCITS T10 and T11.  This material is
   included here for informational purposes only.  The authoritative
   information is given in the appropriate NCITS standards document.

   The authoritative portions of this document specify the mapping of
   standards-compliant fibre channel protocol implementations to TCP/IP.
   This mapping includes sections of this document that describe the
   "iFCP Protocol" (see Section 5).

2.  iFCP Introduction

   iFCP is a gateway-to-gateway protocol that provides fibre channel
   fabric services to fibre channel devices over a TCP/IP network.  iFCP
   uses TCP to provide congestion control, error detection, and
   recovery.  iFCP's primary objective is to allow interconnection and

   networking of existing fibre channel devices at wire speeds over an
   IP network.

   The protocol and method of frame address translation described in
   this document permit the attachment of fibre channel storage devices
   to an IP-based fabric by means of transparent gateways.

   The protocol achieves this transparency by allowing normal fibre
   channel frame traffic to pass through the gateway directly, with
   provisions, where necessary, for intercepting and emulating the
   fabric services required by a fibre channel device.

2.1.  Definitions

   Terms needed to describe the concepts presented in this document are
   presented here.

   Address-translation mode -- A mode of gateway operation in which the
      scope of N_PORT fabric addresses, for locally attached devices,
      are local to the iFCP gateway region in which the devices reside.

   Address-transparent mode -- A mode of gateway operation in which the
      scope of N_PORT fabric addresses, for all fibre channel devices,
      are unique to the bounded iFCP fabric to which the gateway
      belongs.

   Bounded iFCP Fabric -- The union of two or more gateway regions
      configured to interoperate in address-transparent mode.

   DOMAIN_ID -- The value contained in the high-order byte of a 24-bit
      N_PORT fibre channel address.

   F_PORT -- The interface used by an N_PORT to access fibre channel
      switched-fabric functionality.

   Fabric -- From [FC-FS]: "The entity that interconnects N_PORTs
      attached to it and is capable of routing frames by using only the
      address information in the fibre channel frame."

   Fabric Port -- The interface through which an N_PORT accesses a fibre
      channel fabric.  The type of fabric port depends on the fibre
      channel fabric topology.  In this specification, all fabric port
      interfaces are considered functionally equivalent.

   FC-2 -- The fibre channel transport services layer, described in
      [FC-FS].

   FC-4 -- The fibre channel mapping of an upper-layer protocol, such as
      [FCP-2], the fibre channel to SCSI mapping.

   Fibre Channel Device -- An entity implementing the functionality
      accessed through an FC-4 application protocol.

   Fibre Channel Network -- A native fibre channel fabric and all
      attached fibre channel nodes.

   Fibre Channel Node -- A collection of one or more N_PORTs controlled
      by a level above the FC-2 layer.  A node is attached to a fibre
      channel fabric by means of the N_PORT interface, described in
      [FC-FS].

   Gateway Region -- The portion of an iFCP fabric accessed through an
      iFCP gateway by a remotely attached N_PORT.  Fibre channel devices
      in the region consist of all those locally attached to the
      gateway.

   iFCP -- The protocol discussed in this document.

   iFCP Frame -- A fibre channel frame encapsulated in accordance with
      the FC Frame Encapsulation Specification [ENCAP] and this
      specification.

   iFCP Portal -- An entity representing the point at which a logical or
      physical iFCP device is attached to the IP network.  The network
      address of the iFCP portal consists of the IP address and TCP port
      number to which a request is sent when the TCP connection is
      created for an iFCP session (see Section 5.2.1).

   iFCP Session -- An association comprised of a pair of N_PORTs and a
      TCP connection that carries traffic between them.  An iFCP session
      may be created as the result of a PLOGI fibre channel login
      operation.

   iSNS -- The server functionality and IP protocol that provide storage
      name services in an iFCP network.  Fibre channel name services are
      implemented by an iSNS name server, as described in [ISNS].

   Locally Attached Device -- With respect to a gateway, a fibre channel
      device accessed through the fibre channel fabric to which the
      gateway is attached.

   Logical iFCP Device -- The abstraction representing a single fibre
      channel device as it appears on an iFCP network.

   N_PORT -- An iFCP or fibre channel entity representing the interface
      to fibre channel device functionality.  This interface implements
      the fibre channel N_PORT semantics, specified in [FC-FS].  Fibre
      channel defines several variants of this interface that depend on
      the fibre channel fabric topology.  As used in this document, the
      term applies equally to all variants.

   N_PORT Alias --  The N_PORT address assigned by a gateway to
      represent a remote N_PORT accessed via the iFCP protocol.

   N_PORT fabric address -- The address of an N_PORT within the fibre
      channel fabric.

   N_PORT ID -- The address of a locally attached N_PORT within a
      gateway region.  N_PORT IDs are assigned in accordance with the
      fibre channel rules for address assignment, specified in [FC-FS].

   N_PORT Network Address -- The address of an N_PORT in the iFCP
      fabric.  This address consists of the IP address and TCP port
      number of the iFCP Portal and the N_PORT ID of the locally
      attached fibre channel device.

   Port Login (PLOGI) -- The fibre channel Extended Link Service (ELS)
      that establishes an iFCP session through the exchange of
      identification and operation parameters between an originating
      N_PORT and a responding N_PORT.

   Remotely Attached Device -- With respect to a gateway, a fibre
      channel device accessed from the gateway by means of the iFCP
      protocol.

   Unbounded iFCP Fabric -- The union of two or more gateway regions
      configured to interoperate in address-translation mode.

3.  Fibre Channel Communication Concepts

   Fibre channel is a frame-based, serial technology designed for peer-
   to-peer communication between devices at gigabit speeds and with low
   overhead and latency.

   This section contains a discussion of the fibre channel concepts that
   form the basis for the iFCP network architecture and protocol
   described in this document.  Readers familiar with this material may
   skip to Section 4.

   Material presented in this section is drawn from the following T11
   specifications:

   -- The Fibre Channel Framing and Signaling Interface, [FC-FS]

   -- Fibre Channel Switch Fabric -2, [FC-SW2]

   -- Fibre Channel Generic Services, [FC-GS3]

   -- Fibre Channel Fabric Loop Attachment, [FC-FLA]

   The reader will find an in-depth treatment of the technology in
   [KEMCMP] and [KEMALP].

3.1.  The Fibre Channel Network

   The fundamental entity in fibre channel is the fibre channel network.
   Unlike a layered network architecture, a fibre channel network is
   largely specified by functional elements and the interfaces between
   them.  As shown in Figure 1, these consist, in part, of the
   following:

   a) N_PORTs -- The end points for fibre channel traffic.  In the FC
      standards, N_PORT interfaces have several variants, depending on
      the topology of the fabric to which they are attached.  As used in
      this specification, the term applies to any one of the variants.

   b) FC Devices -- The fibre channel devices to which the N_PORTs
      provide access.

   c) Fabric Ports -- The interfaces within a fibre channel network that
      provide attachment for an N_PORT.  The types of fabric port depend
      on the fabric topology and are discussed in Section 3.2.

   d) The network infrastructure for carrying frame traffic between
      N_PORTs.

   e) Within a switched or mixed fabric (see Section 3.2), a set of
      auxiliary servers, including a name server for device discovery
      and network address resolution.  The types of service depend on
      the network topology.

         +--------+   +--------+          +--------+  +--------+
         |  FC    |   |  FC    |          |  FC    |  |  FC    |
         | Device |   | Device |<-------->| Device |  | Device |
         |........|   |........|          |........|  |........|
         | N_PORT |   | N_PORT |          | N_PORT |  | N_PORT |
         +---+----+   +----+---+          +----+---+  +----+---+
             |             |                   |           |
         +---+----+   +----+---+          +----+---+  +----+---+
         | Fabric |   | Fabric |          | Fabric |  | Fabric |
         | Port   |   | Port   |          | Port   |  | Port   |
         +========+===+========+==========+========+==+========+
         |                        Fabric                       |
         |                          &                          |
         |                     Fabric Services                 |
         +-----------------------------------------------------+

                   Figure 1. A Fibre Channel Network

   The following sections describe fibre channel network topologies and
   give an overview of the fibre channel communications model.

3.2.  Fibre Channel Network Topologies

   The principal fibre channel network topologies consist of the
   following:

   a) Arbitrated Loop -- A series of N_PORTs connected together in
      daisy-chain fashion.  In [FC-FS], loop-connected N_PORTs are
      referred to as NL_PORTs.  Data transmission between NL_PORTs
      requires arbitration for control of the loop in a manner similar
      to that of a token ring network.

   b) Switched Fabric --  A network consisting of switching elements, as
      described in Section 3.2.1.

   c) Mixed Fabric -- A network consisting of switches and "fabric-
      attached" loops.  A description can be found in [FC-FLA].  A
      loop-attached N_PORT (NL_PORT) is connected to the loop through an
      L_PORT and accesses the fabric by way of an FL_PORT.

   Depending on the topology, the N_PORT and its means of network
   attachment may be one of the following:

         FC Network
         Topology         Network Interface   N_PORT Variant
         ---------------  -----------------   --------------
         Loop             L_PORT              NL_PORT

         Switched         F_PORT              N_PORT

         Mixed            FL_PORT via L_PORT  NL_PORT

                          F_PORT              N_PORT

   The differences in each N_PORT variant and its corresponding fabric
   port are confined to the interactions between them.  To an external
   N_PORT, all fabric ports are transparent, and all remote N_PORTs are
   functionally identical.

3.2.1.  Switched Fibre Channel Fabrics

   An example of a multi-switch fibre channel fabric is shown in Figure
   2.

                +----------+          +----------+
                |    FC    |          |  FC      |
                |   Device |          | Device   |
                |..........|          |..........|
                |   N_PORT |<........>| N_PORT   |
                +----+-----+          +-----+----+
                     |                      |
                +----+-----+          +-----+----+
                | F_PORT   |          | F_PORT   |
      ==========+==========+==========+==========+==============
                |  FC      |          | FC       |
                |  Switch  |          | Switch   |
                +----------+          +----------+ Fibre Channel
                |Inter-    |          |Inter-    |   Fabric
                |Switch    |          |Switch    |
                |Interface |          |Interface |
                +-----+----+          +-----+----+
                      |                     |
                      |                     |
                +-----+----+----------+-----+----+
                |Inter-    |          |Inter-    |
                |Switch    |          |Switch    |
                |Interface |          |Interface |
                +----------+          +----------+
                |            FC Switch           |
                |                                |
                +--------------------------------+

            Figure 2. Multi-Switch Fibre Channel Fabric

   The interface between switch elements is either a proprietary
   interface or the standards-compliant E_PORT interface, which is
   described by the FC-SW2 specification, [FC-SW2].

3.2.2.   Mixed Fibre Channel Fabric

   A mixed fabric contains one or more arbitrated loops connected to a
   switched fabric as shown in Figure 3.

                +----------+          +----------+   +---------+
                |    FC    |          |  FC      |   |  FC     |
                |   Device |          | Device   |   | Device  |
                |..........| FC       |..........|   |.........|
                |   N_PORT |<........>| NL_PORT  +---+ NL_PORT |
                +----+-----+ Traffic  +-----+----+   +----+----+
                     |                      |   FC Loop   |
                +----+-----+          +-----+----+        |
                | F_PORT   |          | FL_PORT  +--------+
                |          |          |          |
      ==========+==========+==========+==========+==============
                |  FC      |          | FC       |
                |  Switch  |          | Switch   |
                +----------+          +----------+
                |Inter-    |          |Inter-    |
                |Switch    |          |Switch    |
                |Interface |          |Interface |
                +-----+----+          +-----+----+
                      |                     |
                      |                     |
                +-----+----+----------+-----+----+
                |Inter-    |          |Inter-    |
                |Switch    |          |Switch    |
                |Interface |          |Interface |
                +----------+          +----------+
                |            FC Switch           |
                |                                |
                +--------------------------------+

               Figure 3. Mixed Fibre Channel Fabric

   As noted previously, the protocol for communications between peer
   N_PORTs is independent of the fabric topology, N_PORT variant, and
   type of fabric port to which an N_PORT is attached.

3.3.  Fibre Channel Layers and Link Services

   A fibre channel consists of the following layers:

      FC-0 -- The interface to the physical media.

      FC-1 -- The encoding and decoding of data and out-of-band physical
      link control information for transmission over the physical media.

      FC-2 -- The transfer of frames, sequences, and Exchanges
      comprising protocol information units.

      FC-3 -- Common Services.

      FC-4 -- Application protocols such as the fibre channel protocol
      for SCSI (FCP).

   In addition to the layers defined above, a fibre channel defines a
   set of auxiliary operations, some of which are implemented within the
   transport layer fabric, called link services.  These are required in
   order to manage the fibre channel environment, establish
   communications with other devices, retrieve error information,
   perform error recovery, and provide other similar services.  Some
   link services are executed by the N_PORT.  Others are implemented
   internally within the fabric.  These internal services are described
   in the next section.

3.3.1.  Fabric-Supplied Link Services

   Servers that are internal to a switched fabric handle certain classes
   of Link Service requests and service-specific commands.  The servers
   appear as N_PORTs located at the 'well-known' N_PORT fabric addresses
   specified in [FC-FS].  Service requests use the standard fibre
   channel mechanisms for N_PORT-to-N_PORT communications.

   All switched fabrics must provide the following services:

      Fabric F_PORT server -- Services N_PORT requests to access the
      fabric for communications.

      Fabric Controller -- Provides state change information to inform
      other FC devices when an N_PORT exits or enters the fabric (see
      Section 3.5).

      Directory/Name Server - Allows N_PORTs to register information in
      a database, retrieve information about other N_PORTs, and to
      discover other devices as described in Section 3.5.

   A switched fabric may also implement the following optional services:

      Broadcast Address/Server -- Transmits single-frame, class 3
      sequences to all N_PORTs.

      Time Server -- Intended for the management of fabric-wide
      expiration timers or elapsed time values; not intended for precise
      time synchronization.

      Management Server - Collects and reports management information,
      such as link usage, error statistics, link quality, and similar
      items.

      Quality of Service Facilitator - Performs fabric-wide bandwidth
      and latency management.

3.4.  Fibre Channel Nodes

   A fibre channel node has one or more fabric-attached N_PORTs.  The
   node and its N_PORTs have the following associated identifiers:

   a) A worldwide-unique identifier for the node.

   b) A worldwide-unique identifier for each N_PORT associated with the
      node.

   c) For each N_PORT attached to a fabric, a 24-bit fabric-unique
      address with the properties defined in Section 3.7.1.  The fabric
      address is the address to which frames are sent.

   Each worldwide-unique identifier is a 64-bit binary quantity with the
   format defined in [FC-FS].

3.5.  Fibre Channel Device Discovery

   In a switched or mixed fabric, fibre channel devices and changes in
   the device configuration may be discovered by means of services
   provided by the fibre channel Name Server and Fabric Controller.

   The Name Server provides registration and query services that allow a
   fibre channel device to register its presence on the fabric and to
   discover the existence of other devices.  For example, one type of
   query obtains the fabric address of an N_PORT from its 64-bit
   worldwide-unique name.  The full set of supported fibre channel name
   server queries is specified in [FC-GS3].

   The Fabric Controller complements the static discovery capabilities
   provided by the Name Server through a service that dynamically alerts
   a fibre channel device whenever an N_PORT is added or removed from
   the configuration.  A fibre channel device receives these
   notifications by subscribing to the service as specified in [FC-FS].

3.6.  Fibre Channel Information Elements

   The fundamental element of information in fibre channel is the frame.
   A frame consists of a fixed header and up to 2112 bytes of payload
   with the structure described in Section 3.7.  The maximum frame size
   that may be transmitted between a pair of fibre channel devices is
   negotiable up to the payload limit, based on the size of the frame
   buffers in each fibre channel device and the path maximum
   transmission unit (MTU) supported by the fabric.

   Operations involving the transfer of information between N_PORT pairs
   are performed through 'Exchanges'.  In an Exchange, information is
   transferred in one or more ordered series of frames, referred to as
   Sequences.

   Within this framework, an upper layer protocol is defined in terms of
   transactions carried by Exchanges.  In turn, each transaction
   consists of protocol information units, each of which is carried by
   an individual Sequence within an Exchange.

3.7.  Fibre Channel Frame Format

   A fibre channel frame consists of a header, payload and 32-bit CRC
   bracketed by SOF and EOF delimiters.  The header contains the control
   information necessary to route frames between N_PORTs and manage
   Exchanges and Sequences.  The following diagram gives a schematic
   view of the frame.

               Bit  0                          31
                   +-----------------------------+
            Word 0 |   Start-of-frame Delimiter  |
                   +-----+-----------------------+<----+
                   |     | Destination N_PORT    |     |
                 1 |     | Fabric Address (D_ID) |     |
                   |     |  (24 bits)            |     |
                   +-----+-----------------------+   24-byte
                   |     | Source N_PORT         |   Frame
                 2 |     | Fabric Address (S_ID) |   Header
                   |     | (24 bits)             |     |
                   +-----+-----------------------+     |
                 3 |    Control information for  |     |
                 . |    frame type, Exchange     |     |
                 . |    management, IU           |     |
                 . |    segmentation and         |     |
                 6 |    re-assembly              |     |
                   +-----------------------------+<----+
                 7 |                             |
                 . |        Frame payload        |
                 . |       (0 - 2112 bytes)      |
                 . |                             |
                 . |                             |
                 . |                             |
                   +-----------------------------+
                 . |            CRC              |
                   +-----------------------------+
                 n |    End-of-Frame Delimiter   |
                   +-----------------------------+

                Figure 4. Fibre Channel Frame Format

   The source and destination N_PORT fabric addresses embedded in the
   S_ID and D_ID fields represent the physical addresses of originating
   and receiving N_PORTs, respectively.

3.7.1.  N_PORT Address Model

   N_PORT fabric addresses are 24-bit values with the following format,
   defined by the fibre channel specification [FC-FS]:

            Bit   0         7 8         15 16       23
                 +-----------+------------+----------+
                 | Domain ID | Area ID    |  Port ID |
                 +-----------+------------+----------+

                 Figure 5. Fibre Channel Address Format

   A fibre channel device acquires an address when it logs into the
   fabric.  Such addresses are volatile and subject to change based on
   modifications in the fabric configuration.

   In a fibre channel fabric, each switch element has a unique Domain ID
   assigned by the principal switch.  The value of the Domain ID ranges
   from 1 to 239 (0xEF).  Each switch element, in turn, administers a
   block of addresses divided into area and port IDs.  An N_PORT
   connected to an F_PORT receives a unique fabric address, consisting
   of the switch's Domain ID concatenated with switch-assigned area and
   port IDs.

   A loop-attached NL_PORT (see Figure 3) obtains the Port ID component
   of its address during the loop initialization process described in
   [FC-AL2].  The area and domain IDs are supplied by the fabric when
   the fabric login (FLOGI) is executed.

3.8.  Fibre Channel Transport Services

   N_PORTs communicate by means of the following classes of service,
   which are specified in the fibre channel standard ([FC-FS]):

      Class 1 - A dedicated physical circuit connecting two N_PORTs.

      Class 2 - A frame-multiplexed connection with end-to-end flow
      control and delivery confirmation.

      Class 3 - A frame-multiplexed connection with no provisions for
      end-to-end flow control or delivery confirmation.

      Class 4 -- A connection-oriented service, based on a virtual
      circuit model, providing confirmed delivery with bandwidth and
      latency guarantees.

      Class 6 -- A reliable multicast service derived from class 1.

   Classes 2 and 3 are the predominant services supported by deployed
   fibre channel storage and clustering systems.

   Class 3 service is similar to UDP or IP datagram service.  Fibre
   channel storage devices using this class of service rely on the ULP
   implementation to detect and recover from transient device and
   transport errors.

   For class 2 and class 3 service, the fibre channel fabric is not
   required to provide in-order delivery of frames unless it is
   explicitly requested by the frame originator (and supported by the
   fabric).  If ordered delivery is not in effect, it is the

   responsibility of the frame recipient to reconstruct the order in
   which frames were sent, based on information in the frame header.

3.9.  Login Processes

   The Login processes are FC-2 operations that allow an N_PORT to
   establish the operating environment necessary to communicate with the
   fabric, other N_PORTs, and ULP implementations accessed via the
   N_PORT.  Three login operations are supported:

   a) Fabric Login (FLOGI) -- An operation whereby the N_PORT registers
      its presence on the fabric, obtains fabric parameters, such as
      classes of service supported, and receives its N_PORT address,

   b) Port Login (PLOGI) -- An operation by which an N_PORT establishes
      communication with another N_PORT.

   c) Process Login (PRLOGI) -- An operation that establishes the
      process-to-process communications associated with a specific FC-4
      ULP, such as FCP-2, the fibre channel SCSI mapping.

   Since N_PORT addresses are volatile, an N_PORT originating a login
   (PLOGI) operation executes a Name Server query to discover the fibre
   channel address of the remote device.  A common query type involves
   use of the worldwide-unique name of an N_PORT to obtain the 24-bit
   N_PORT fibre channel address to which the PLOGI request is sent.

4.  The iFCP Network Model

   The iFCP protocol enables the implementation of fibre channel fabric
   functionality on an IP network in which IP components and technology
   replace the fibre channel switching and routing infrastructure
   described in Section 3.2.

   The example of Figure 6 shows a fibre channel network with attached
   devices.  Each device accesses the network through an N_PORT
   connected to an interface whose behavior is specified in [FC-FS] or
   [FC-AL2].  In this case, the N_PORT represents any of the variants
   described in Section 3.2.  The interface to the fabric may be an
   L_PORT, F_PORT, or FL_PORT.

   Within the fibre channel device domain, addressable entities consist
   of other N_PORTs and fibre channel devices internal to the network
   that perform the fabric services defined in [FC-GS3].

                      Fibre Channel Network
                  +--------+        +--------+
                  |  FC    |        |  FC    |
                  | Device |        | Device |
                  |........| FC     |........| Fibre Channel
                  | N_PORT |<......>| N_PORT | Device Domain
                  +---+----+ Traffic+----+---+       ^
                      |                  |           |
                  +---+----+        +----+---+       |
                  | Fabric |        | Fabric |       |
                  | Port   |        | Port   |       |
        ==========+========+========+========+==============
                  |       FC Network &       |       |
                  |     Fabric Services      |       v
                  |                          | Fibre Channel
                  +--------------------------+ Network Domain

                    Figure 6. A Fibre Channel Network

            Gateway Region                   Gateway Region
       +--------+  +--------+           +--------+  +--------+
       |   FC   |  |  FC    |           |   FC   |  |   FC   |
       | Device |  | Device |           | Device |  | Device |  Fibre
       |........|  |........| FC        |........|  |........|  Channel
       | N_PORT |  | N_PORT |<.........>| N_PORT |  | N_PORT |  Device
       +---+----+  +---+----+ Traffic   +----+---+  +----+---+  Domain
           |           |                     |           |         ^
       +---+----+  +---+----+           +----+---+  +----+---+     |
       | F_PORT |  | F_PORT |           | F_PORT |  | F_PORT |     |
      =+========+==+========+===========+========+==+========+==========
       |    iFCP Layer      |<--------->|     iFCP Layer     |     |
       |....................|     ^     |....................|     |
       |     iFCP Portal    |     |     |     iFCP Portal    |     v
       +--------+-----------+     |     +----------+---------+    IP
            iFCP|Gateway      Control          iFCP|Gateway      Network
                |              Data                |
                |                                  |
                |                                  |
                |<------Encapsulated Frames------->|
                |      +------------------+        |
                |      |                  |        |
                +------+    IP Network    +--------+
                       |                  |
                       +------------------+

                     Figure 7. An iFCP Fabric Example

   One example of an equivalent iFCP fabric is shown in Figure 7.  The
   fabric consists of two gateway regions, each accessed by a single
   iFCP gateway.

   Each gateway contains two standards-compliant F_PORTs and an iFCP
   Portal for attachment to the IP network.  Fibre channel devices in
   the region are those locally connected to the iFCP fabric through the
   gateway fabric ports.

   Looking into the fabric port, the gateway appears as a fibre channel
   switch element.  At this interface, remote N_PORTs are presented as
   fabric-attached devices.  Conversely, on the IP network side, the
   gateway presents each locally connected N_PORT as a logical fibre
   channel device.

   Extrapolating to the general case, each gateway region behaves like
   an autonomous system whose configuration is invisible to the IP
   network and other gateway regions.  Consequently, in addition to the
   F_PORT shown in the example, a gateway implementation may
   transparently support the following fibre channel interfaces:

      Inter-Switch Link -- A fibre channel switch-to-switch interface
      used to access a region containing fibre channel switch elements.
      An implementation may support the E_PORT defined by [FC-SW2] or
      one of the proprietary interfaces provided by various fibre
      channel switch vendors.  In this case, the gateway acts as a
      border switch connecting the gateway region to the IP network.

      FL_PORT -- An interface that provides fabric access for loop-
      attached fibre channel devices, as specified in [FC-FLA].

      L_PORT -- An interface through which a gateway may emulate the
      fibre channel loop environment specified in [FC-AL2].  As
      discussed in appendix B, the gateway presents remotely accessed
      N_PORTS as loop-attached devices.

   The manner in which these interfaces are provided by a gateway is
   implementation specific and therefore beyond the scope of this
   document.

   Although each region is connected to the IP network through one
   gateway, a region may incorporate multiple gateways for added
   performance and fault tolerance if the following conditions are met:

   a) The gateways MUST coordinate the assignment of N_PORT IDs and
      aliases so that each N_PORT has one and only one address.

   b) All iFCP traffic between a given remote and local N_PORT pair MUST
      flow through the same iFCP session (see Section 5.2.1).  However,
      iFCP sessions to a given remotely attached N_PORT need not
      traverse the same gateway.

   Coordinating address assignments and managing the flow of traffic is
   implementation specific and outside the scope of this specification.

4.1.  iFCP Transport Services

   N_PORT to N_PORT communications that traverse a TCP/IP network
   require the intervention of the iFCP layer within the gateway.  This
   consists of the following operations:

   a) Execution of the frame-addressing and -mapping functions described
      in Section 4.4.

   b) Encapsulation of fibre channel frames for injection into the
      TCP/IP network and de-encapsulation of fibre channel frames
      received from the TCP/IP network.

   c) Establishment of an iFCP session in response to a PLOGI directed
      to a remote device.

   Section 4.4 discusses the iFCP frame-addressing mechanism and the way
   that it is used to achieve communications transparency between
   N_PORTs.

4.1.1.  Fibre Channel Transport Services Supported by iFCP

   An iFCP fabric supports Class 2 and Class 3 fibre channel transport
   services, as specified in [FC-FS].  An iFCP fabric does not support
   Class 4, Class 6, or Class 1 (dedicated connection) service.  An
   N_PORT discovers the classes of transport services supported by the
   fabric during fabric login.

4.2.  iFCP Device Discovery and Configuration Management

   An iFCP implementation performs device discovery and iFCP fabric
   management through the Internet Storage Name Service defined in
   [ISNS].  Access to an iSNS server is required to perform the
   following functions:

   a) Emulate the services provided by the fibre channel name server
      described in Section 3.3.1, including a mechanism for
      asynchronously notifying an N_PORT of changes in the iFCP fabric
      configuration.

   b) Aggregate gateways into iFCP fabrics for interoperation.

   c) Segment an iFCP fabric into fibre channel zones through the
      definition and management of device discovery scopes, referred to
      as 'discovery domains'.

   d) Store and distribute security policies, as described in Section
      10.2.9.

   e) Implementation of the fibre channel broadcast mechanism.

4.3.  iFCP Fabric Properties

   A collection of iFCP gateways may be configured for interoperation as
   either a bounded or an unbounded iFCP fabric.

   Gateways in a bounded iFCP fabric operate in address transparent
   mode, as described in Section 4.5.  In this mode, the scope of a
   fibre channel N_PORT address is fabric-wide and is derived from
   domain IDs issued by the iSNS server from a common pool.  As
   discussed in Section 4.3.2, the maximum number of domain IDs allowed
   by the fibre channel limits the configuration of a bounded iFCP
   fabric.

   Gateways in an unbounded iFCP fabric operate in address translation
   mode as described in Section 4.6.  In this mode, the scope of an
   N_PORT address is local to a gateway region.  For fibre channel
   traffic between regions, the translation of frame-embedded N_PORT
   addresses is performed by the gateway.  As discussed below, the
   number of switch elements and gateways in an unbounded iFCP fabric
   may exceed the limits of a conventional fibre channel fabric.

   All iFCP gateways MUST support unbounded iFCP fabrics.  Support for
   bounded iFCP fabrics is OPTIONAL.

   The decision to support bounded iFCP fabrics in a gateway
   implementation depends on the address transparency, configuration
   scalability, and fault tolerance considerations given in the
   following sections.

4.3.1.  Address Transparency

   Although iFCP gateways in an unbounded fabric will convert N_PORT
   addresses in the frame header and payload of standard link service
   messages, a gateway cannot convert such addresses in the payload of
   vendor- or user-specific fibre channel frame traffic.

   Consequently, although both bounded and unbounded iFCP fabrics
   support standards-compliant FC-4 protocol implementations and link
   services used by mainstream fibre channel applications, a bounded
   iFCP fabric may also support vendor- or user-specific protocol and
   link service implementations that carry N_PORT IDs in the frame
   payload.

4.3.2.  Configuration Scalability

   The scalability limits of a bounded fabric configuration are a
   consequence of the fibre channel address allocation policy discussed
   in Section 3.7.1.  As noted, a bounded iFCP fabric using this address
   allocation scheme is limited to a combined total of 239 gateways and
   fibre channel switch elements.  As the system expands, the network
   may grow to include many switch elements and gateways, each of which
   controls a small number of devices.  In this case, the limitation in
   switch and gateway count may become a barrier to extending and fully
   integrating the storage network.

   Since N_PORT fibre channel addresses in an unbounded iFCP fabric are
   not fabric-wide, the limits imposed by fibre channel address
   allocation only apply within the gateway region.  Across regions, the
   number of iFCP gateways, fibre channel devices, and switch elements
   that may be internetworked are not constrained by these limits.  In
   exchange for improved scalability, however, implementations must
   consider the incremental overhead of address conversion, as well as
   the address transparency issues discussed in Section 4.3.1.

4.3.3.  Fault Tolerance

   In a bounded iFCP fabric, address reassignment caused by a fault or
   reconfiguration, such as the addition of a new gateway region, may
   cascade to other regions, causing fabric-wide disruption as new
   N_PORT addresses are assigned.  Furthermore, before a new gateway can
   be merged into the fabric, its iSNS server must be slaved to the iSNS
   server in the bounded fabric to centralize the issuance of domain
   IDs.  In an unbounded iFCP fabric, coordinating the iSNS databases
   requires only that the iSNS servers exchange client attributes with
   one another.

   A bounded iFCP fabric also has an increased dependency on the
   availability of the iSNS server, which must act as the central
   address assignment authority.  If connectivity with the server is
   lost, new DOMAIN_ID values cannot be automatically allocated as
   gateways and fibre channel switch elements are added.

4.4.  The iFCP N_PORT Address Model

   This section discusses iFCP extensions to the fibre channel
   addressing model of Section 3.7.1, which are required for the
   transparent routing of frames between locally and remotely attached
   N_PORTs.

   In the iFCP protocol, an N_PORT is represented by the following
   addresses:

   a) A 24-bit N_PORT ID.  The fibre channel N_PORT address of a locally
      attached device.  Depending on the gateway addressing mode, the
      scope is local either to a region or to a bounded iFCP fabric.  In
      either mode, communications between N_PORTs in the same gateway
      region use the N_PORT ID.

   b) A 24-bit N_PORT alias.  The fibre channel N_PORT address assigned
      by each gateway operating in address translation mode to identify
      a remotely attached N_PORT.  Frame traffic is intercepted by an
      iFCP gateway and directed to a remotely attached N_PORT by means
      of the N_PORT alias.  The address assigned by each gateway is
      unique within the scope of the gateway region.

   c) An N_PORT network address.  A tuple consisting of the gateway IP
      address, TCP port number, and N_PORT ID.  The N_PORT network
      address identifies the source and destination N_PORTs for fibre
      channel traffic on the IP network.

   To provide transparent communications between a remote and local
   N_PORT, a gateway MUST maintain an iFCP session descriptor (see
   Section 5.2.2.2) reflecting the association between the fibre channel
   address representing the remote N_PORT and the remote device's N_PORT
   network address.  To establish this association, the iFCP gateway
   assigns and manages fibre channel N_PORT fabric addresses as
   described in the following paragraphs.

   In an iFCP fabric, the iFCP gateway performs the address assignment
   and frame routing functions of an FC switch element.  Unlike an FC
   switch, however, an iFCP gateway must also direct frames to external
   devices attached to remote gateways on the IP network.

   In order to be transparent to FC devices, the gateway must deliver
   such frames using only the 24-bit destination address in the frame
   header.  By exploiting its control of address allocation and access
   to frame traffic entering or leaving the gateway region, the gateway
   is able to achieve the necessary transparency.

   N_PORT addresses within a gateway region may be allocated in one of
   two ways:

   a) Address Translation Mode - A mode of N_PORT address assignment in
      which the scope of an N_PORT fibre channel address is unique to
      the gateway region.  The address of a remote device is represented
      in that gateway region by its gateway-assigned N_PORT alias.

   b) Address Transparent Mode - A mode of N_PORT address assignment in
      which the scope of an N_PORT fibre channel address is unique
      across the set of gateway regions comprising a bounded iFCP
      fabric.

   In address transparent mode, gateways within a bounded fabric
   cooperate in the assignment of addresses to locally attached N_PORTs.
   Each gateway in control of a region is responsible for obtaining and
   distributing unique domain IDs from the address assignment authority,
   as described in Section 4.5.1.  Consequently, within the scope of a
   bounded fabric, the address of each N_PORT is unique.  For that
   reason, gateway-assigned aliases are not required for representing
   remote N_PORTs.

   All iFCP implementations MUST support operations in address
   translation mode.  Implementation of address transparent mode is
   OPTIONAL but, of course, must be provided if bounded iFCP fabric
   configurations are to be supported.

   The mode of gateway operation is settable in an implementation-
   specific manner.  The implementation MUST NOT:

   a) allow the mode to be changed after the gateway begins processing
      fibre channel frame traffic,

   b) permit operation in more than one mode at a time, or

   c) establish an iFCP session with a gateway that is not in the same
      mode.

4.5.  Operation in Address Transparent Mode

   The following considerations and requirements apply to this mode of
   operation:

   a) iFCP gateways in address transparent mode will not interoperate
      with iFCP gateways that are not in address transparent mode.

   b) When interoperating with locally attached fibre channel switch
      elements, each iFCP gateway MUST assume control of DOMAIN_ID
      assignments in accordance with the appropriate fibre channel
      standard or vendor-specific protocol specification.  As described
      in Section 4.5.1, DOMAIN_ID values that are assigned to FC
      switches internal to the gateway region must be issued by the iSNS
      server.

   c) When operating in address transparent Mode, fibre channel address
      translation SHALL NOT take place.

   When operating in address transparent mode, however, the gateway MUST
   establish and maintain the context of each iFCP session in accordance
   with Section 5.2.2.

4.5.1.  Transparent Mode Domain ID Management

   As described in Section 4.5, each gateway and fibre channel switch in
   a bounded iFCP fabric has a unique domain ID.  In a gateway region
   containing fibre channel switch elements, each element obtains a
   domain ID by querying the principal switch as described in [FC-SW2]
   -- in this case, the iFCP gateway itself.  The gateway, in turn,
   obtains domain IDs on demand from the iSNS name server acting as the
   central address allocation authority.  In effect, the iSNS server
   assumes the role of principal switch for the bounded fabric.  In that
   case, the iSNS database contains:

   a) The definition for one or more bounded iFCP fabrics, and

   b) For each bounded fabric, a worldwide-unique name identifying each
      gateway in the fabric.  A gateway in address transparent mode MUST
      reside in one, and only one, bounded fabric.

   As the Principal Switch within the gateway region, an iFCP gateway in
   address transparent mode SHALL obtain domain IDs for use in the
   gateway region by issuing the appropriate iSNS query, using its
   worldwide name.

4.5.2.  Incompatibility with Address Translation Mode

   Except for the session control frames specified in Section 6, iFCP
   gateways in address transparent mode SHALL NOT originate or accept
   frames that do not have the TRP bit set to one in the iFCP flags
   field of the encapsulation header (see Section 5.3.1).  The iFCP
   gateway SHALL immediately terminate all iFCP sessions with the iFCP
   gateway from which it receives such frames.

4.6.  Operation in Address Translation Mode

   This section describes the process for managing the assignment of
   addresses within a gateway region that is part of an unbounded iFCP
   fabric, including the modification of FC frame addresses embedded in
   the frame header for frames sent and received from remotely attached
   N_PORTs.

   As described in Section 4.4, the scope of N_PORT addresses in this
   mode is local to the gateway region.  A principal switch within the
   gateway region, possibly the iFCP gateway itself, oversees the
   assignment of such addresses, in accordance with the rules specified
   in [FC-FS] and [FC-FLA].

   The assignment of N_PORT addresses to locally attached devices is
   controlled by the switch element to which the device is connected.

   The assignment of N_PORT addresses for remotely attached devices is
   controlled by the gateway by which the remote device is accessed.  In
   this case, the gateway MUST assign a locally significant N_PORT alias
   to be used in place of the N_PORT ID assigned by the remote gateway.
   The N_PORT alias is assigned during device discovery, as described in
   Section 5.2.2.1.

   To perform address conversion and to enable the appropriate routing,
   the gateway MUST establish an iFCP session and generate the
   information required to map each N_PORT alias to the appropriate
   TCP/IP connection context and N_PORT ID of the remotely accessed
   N_PORT.  These mappings are created and updated by means specified in
   Section 5.2.2.2.  As described in that section, the required mapping
   information is represented by the iFCP session descriptor reproduced
   in Figure 8.

                      +-----------------------+
                      |TCP Connection Context |
                      +-----------------------+
                      |  Local N_PORT ID      |
                      +-----------------------+
                      |  Remote N_PORT ID     |
                      +-----------------------+
                      |  Remote N_PORT Alias  |
                      +-----------------------+

      Figure 8. iFCP Session Descriptor (from Section 5.2.2.2)

   Except for frames comprising special link service messages (see
   Section 7.2), outbound frames are encapsulated and sent without
   modification.  Address translation is deferred until receipt from the
   IP network, as specified in Section 4.6.1.

4.6.1.  Inbound Frame Address Translation

   For inbound frames received from the IP network, the receiving
   gateway SHALL reference the session descriptor to fill in the D_ID
   field with the destination N_PORT ID and the S_ID field with the
   N_PORT alias it assigned.  The translation process for inbound frames
   is shown in Figure 9.

        Network Format of Inbound Frame
   +--------------------------------------------+            iFCP
   |          FC Encapsulation Header           |           Session
   +--------------------------------------------+           Descriptor
   |            SOF Delimiter Word              |              |
   +========+===================================+              V
   |        |         D_ID Field                |     +--------+-----+
   +--------+-----------------------------------+     | Lookup source|
   |        |         S_ID Field                |     | N_PORT Alias |
   +--------+-----------------------------------+     | and          |
   |        Control Information, Payload,       |     | destination  |
   |        and FC CRC                          |     | N_PORT ID    |
   |                                            |     +--------+-----+
   |                                            |              |
   |                                            |              |
   +============================================+              |
   |         EOF Delimiter Word                 |              |
   +--------------------------------------------+              |
                                                               |
                                                               |
   Frame after Address Translation and De-encapsulation        |
   +--------+-----------------------------------+              |
   |        |  Destination N_PORT ID            |<-------------+
   +--------+-----------------------------------+              |
   |        |  Source N_PORT Alias              |<-------------+
   +--------+-----------------------------------+
   |                                            |
   |        Control information, Payload,       |
   |        and FC CRC                          |
   +--------------------------------------------+

            Figure 9. Inbound Frame Address Translation

   The receiving gateway SHALL consider the contents of the S_ID and
   D_ID fields to be undefined when received.  After replacing these
   fields, the gateway MUST recalculate the FC CRC.

4.6.2.  Incompatibility with Address Transparent Mode

   iFCP gateways in address translation mode SHALL NOT originate or
   accept frames that have the TRP bit set to one in the iFCP flags
   field of the encapsulation header.  The iFCP gateway SHALL
   immediately abort all iFCP sessions with the iFCP gateway from which
   it receives frames such as those described in Section 5.2.3.

5.  iFCP Protocol

5.1.  Overview

5.1.1.  iFCP Transport Services

   The main function of the iFCP protocol layer is to transport fibre
   channel frame images between locally and remotely attached N_PORTs.

   When transporting frames to a remote N_PORT, the iFCP layer
   encapsulates and routes the fibre channel frames comprising each
   fibre channel Information Unit via a predetermined TCP connection for
   transport across the IP network.

   When receiving fibre channel frame images from the IP network, the
   iFCP layer de-encapsulates and delivers each frame to the appropriate
   N_PORT.

   The iFCP layer processes the following types of traffic:

   a) FC-4 frame images associated with a fibre channel application
      protocol.

   b) FC-2 frames comprising fibre channel link service requests and
      responses.

   c) Fibre channel broadcast frames.

   d) iFCP control messages required to set up, manage, or terminate an
      iFCP session.

   For FC-4 N_PORT traffic and most FC-2 messages, the iFCP layer never
   interprets the contents of the frame payload.

   iFCP does interpret and process iFCP control messages and certain
   link service messages, as described in Section 5.1.2.

5.1.2.  iFCP Support for Link Services

   iFCP must intervene in the processing of those fibre channel link
   service messages that contain N_PORT addresses in the message payload
   or that require other special handling, such as an N_PORT login
   request (PLOGI).

   In the former case, an iFCP gateway operating in address translation
   mode MUST supplement the payload with additional information that
   enables the receiving gateway to convert such embedded N_PORT
   addresses to its frame of reference.

   For out bound fibre channel frames comprising such a link service,
   the iFCP layer creates the supplemental information based on frame
   content, modifies the frame payload, and then transmits the resulting
   fibre channel frame with supplemental data through the appropriate
   TCP connection.

   For incoming iFCP frames containing supplemented fibre channel link
   service frames, iFCP must interpret the frame, including any
   supplemental information, modify the frame content, and forward the
   resulting frame to the destination N_PORT for further processing.

   Section 7.1 describes the processing of these link service messages
   in detail.

5.2.  TCP Stream Transport of iFCP Frames

5.2.1.  iFCP Session Model

   An iFCP session consists of the pair of N_PORTs comprising the
   session endpoints joined by a single TCP/IP connection.  No more than
   one iFCP session SHALL exist between a given pair of N_PORTs.

   An N_PORT is identified by its network address, consisting of:

   a) the N_PORT ID assigned by the gateway to which the N_PORT is
      locally attached, and

   b) the iFCP Portal address, consisting of its IP address and TCP port
      number.

   Because only one iFCP session may exist between a pair of N_PORTs,
   the iFCP session is uniquely identified by the network addresses of
   the session end points.

   TCP connections that may be used for iFCP sessions between pairs of
   iFCP portals are either "bound" or "unbound".  An unbound connection

   is a TCP connection that is not actively supporting an iFCP session.
   A gateway implementation MAY establish a pool of unbound connections
   to reduce the session setup time.  Such pre-existing TCP connections
   between iFCP Portals remain unbound and uncommitted until allocated
   to an iFCP session through a CBIND message (see Section 6.1).

   When the iFCP layer creates an iFCP session, it may select an
   existing unbound TCP connection or establish a new TCP connection and
   send the CBIND message down that TCP connection.  This allocates the
   TCP connection to that iFCP session.

5.2.2.  iFCP Session Management

   This section describes the protocols and data structures required to
   establish and terminate an iFCP session.

5.2.2.1.  The Remote N_PORT Descriptor

   In order to establish an iFCP session, an iFCP gateway MUST maintain
   information allowing it to locate a remotely attached N_PORT.  For
   explanatory purposes, such information is assumed to reside in a
   descriptor with the format shown in Figure 10.

                    +--------------------------------+
                    |  N_PORT Worldwide Unique Name  |
                    +--------------------------------+
                    |  iFCP Portal Address           |
                    +--------------------------------+
                    |  N_PORT ID of Remote N_PORT    |
                    +--------------------------------+
                    |  N_PORT Alias                  |
                    +--------------------------------+

                    Figure 10. Remote N_PORT Descriptor

   Each descriptor aggregates the following information about a remotely
   attached N_PORT:

      N_PORT Worldwide Unique Name -- 64-bit N_PORT worldwide name as
      specified in [FC-FS].  A Remote N_PORT descriptor is uniquely
      identified by this parameter.

      iFCP Portal Address -- The IP address and TCP port number
      referenced when creation of the TCP connection associated with an
      iFCP session is requested.

      N_PORT ID --  N_PORT fibre channel address assigned to the remote
      device by the remote iFCP gateway.

      N_PORT Alias -- N_PORT fibre channel address assigned to the
      remote device by the 'local' iFCP gateway when it operates in
      address translation mode.

   An iFCP gateway SHALL have one and only one descriptor for each
   remote N_PORT it accesses.  If a descriptor does not exist, one SHALL
   be created using the information returned by an iSNS name server
   query.  Such queries may result from:

   a) a fibre channel Name Server request originated by a locally
      attached N_PORT (see Sections 3.5 and 9.3), or

   b) a CBIND request received from a remote fibre channel device (see
      Section 5.2.2.2).

   When creating a descriptor in response to an incoming CBIND request,
   the iFCP gateway SHALL perform an iSNS name server query using the
   worldwide port name of the remote N_PORT in the SOURCE N_PORT NAME
   field within the CBIND payload.  The descriptor SHALL be filled in
   using the query results.

   After creating the descriptor, a gateway operating in address
   translation mode SHALL create and add the 24-bit N_PORT alias.

5.2.2.1.1.  Updating a Remote N_PORT Descriptor

   A Remote N_PORT descriptor SHALL only be updated as the result of an
   iSNS query to obtain information for the specified worldwide port
   name or from information returned by an iSNS state change
   notification.  Following such an update, a new N_PORT alias SHALL NOT
   be assigned.

   Before such an update, the contents of a descriptor may have become
   stale because of an event that invalidated or triggered a change in
   the N_PORT network address of the remote device, such as a fabric
   reconfiguration or the device's removal or replacement.

   A collateral effect of such an event is that a fibre channel device
   that has been added or whose N_PORT ID has changed will have no
   active N_PORT logins.  Consequently, FC-4 traffic directed to such an
   N_PORT, because of a stale descriptor, will be rejected or discarded.

   Once the originating N_PORT learns of the reconfiguration, usually
   through the name server state change notification mechanism,
   information returned in the notification or the subsequent name
   server lookup needed to reestablish the iFCP session will
   automatically purge such stale data from the gateway.

5.2.2.1.2.  Deleting a Remote N_PORT Descriptor

   Deleting a remote N_PORT descriptor is equivalent to freeing up the
   corresponding N_PORT alias for reuse.  Consequently, the descriptor
   MUST NOT be deleted while there are any iFCP sessions that reference
   the remote N_PORT.

   Descriptors eligible for deletion should be removed based on a last
   in, first out policy.

5.2.2.2.  Creating an iFCP Session

   An iFCP session may be in one of the following states:

      OPEN  --  The session state in which fibre channel frame images
      may be sent and received.

      OPEN PENDING -- The session state after a gateway has issued a
      CBIND request but no response has yet been received.  No fibre
      channel frames may be sent.

   The session may be initiated in response to a PLOGI ELS (see Section
   7.3.1.7) or for any other implementation-specific reason.

   The gateway SHALL create the iFCP session as follows:

   a) Locate the remote N_PORT descriptor corresponding to the session
      end point.  If the session is created in order to forward a fibre
      channel frame, then the session endpoint may be obtained by
      referencing the remote N_PORT alias contained in the frame header
      D_ID field.  If no descriptor exists, an iFCP session SHALL NOT be
      created.

   b) Allocate a TCP connection to the gateway to which the remote
      N_PORT is locally attached.  An implementation may use an existing
      connection in the Unbound state, or a new connection may be
      created and placed in the Unbound state.

      When a connection is created, the IP address and TCP Port number
      SHALL be obtained by referencing the remote N_PORT descriptor as
      specified in Section 5.2.2.1.

   c) If the TCP connection cannot be allocated or cannot be created due
      to limited resources, the gateway SHALL terminate session
      creation.

   d) If the TCP connection is aborted for any reason before the iFCP
      session enters the OPEN state, the gateway SHALL respond in
      accordance with Section 5.2.3 and MAY terminate the attempt to
      create a session or MAY try to establish the TCP connection again.

   e) The gateway SHALL then issue a CBIND session control message (see
      Section 6.1) and place the session in the OPEN PENDING state.

   f) If a CBIND response is returned with a status other than "Success"
      or "iFCP session already exists", the session SHALL be terminated,
      and the TCP connection returned to the Unbound state.

   g) A CBIND STATUS of "iFCP session already exists" indicates that the
      remote gateway has concurrently initiated a CBIND request to
      create an iFCP session between the same pair of N_PORTs.  A
      gateway receiving such a response SHALL terminate this attempt and
      process the incoming CBIND request in accordance with Section
      5.2.2.3.

   h) In response to a CBIND STATUS of "Success", the gateway SHALL
      place the session in the OPEN state.

   Once the session is placed in the OPEN state, an iFCP session
   descriptor SHALL be created, containing the information shown in
   Figure 11:

                        +-----------------------+
                        |TCP Connection Context |
                        +-----------------------+
                        |  Local N_PORT ID      |
                        +-----------------------+
                        |  Remote N_PORT ID     |
                        +-----------------------+
                        |  Remote N_PORT Alias  |
                        +-----------------------+

                     Figure 11. iFCP Session Descriptor

      TCP Connection Context -- Information required to identify the TCP
      connection associated with the iFCP session.

      Local N_PORT ID --  N_PORT ID of the locally attached fibre
      channel device.

      Remote N_PORT ID -- N_PORT ID assigned to the remote device by the
      remote gateway.

      Remote N_PORT Alias -- Alias assigned to the remote N_PORT by the
      local gateway when it operates in address translation mode.  If in
      this mode, the gateway SHALL copy this parameter from the Remote
      N_PORT descriptor.  Otherwise, it is not filled in.

5.2.2.3.  Responding to a CBIND Request

   The gateway receiving a CBIND request SHALL respond as follows:

   a) If the receiver has a duplicate iFCP session in the OPEN PENDING
      state, then the receiving gateway SHALL compare the Source N_PORT
      Name in the incoming CBIND payload with the Destination N_PORT
      Name.

   b) If the Source N_PORT Name is greater, the receiver SHALL issue a
      CBIND response of "Success" and SHALL place the session in the
      OPEN state.

   c) If the Source N_PORT Name is less, the receiver shall issue a
      CBIND RESPONSE of Failed - N_PORT session already exists.  The
      state of the receiver-initiated iFCP session SHALL BE unchanged.

   d) If there is no duplicate iFCP session in the OPEN PENDING state,
      the receiving gateway SHALL issue a CBIND response.  If a status
      of Success is returned, the receiving gateway SHALL create the
      iFCP session and place it in the OPEN state.  An iFCP session
      descriptor SHALL be created as described in Section 5.2.2.2.

   e) If a remote N_PORT descriptor does not exist, one SHALL be created
      and filled in as described in Section 5.2.2.1.

5.2.2.4.  Monitoring iFCP Connectivity

   During extended periods of inactivity, an iFCP session may be
   terminated due to a hardware failure within the gateway or through
   loss of TCP/IP connectivity.  The latter may occur when the session
   traverses a stateful intermediate device, such as a NA(P)T box or
   firewall, that detects and purges connections it believes are unused.

   To test session liveness, expedite the detection of connectivity
   failures, and avoid spontaneous connection termination, an iFCP
   gateway may maintain a low level of session activity and monitor the
   session by requesting that the remote gateway periodically transmit
   the LTEST message described in Section 6.3.  All iFCP gateways SHALL
   support liveness testing as described in this specification.

   A gateway requests the LTEST heartbeat by specifying a non-zero value
   for the LIVENESS TEST INTERVAL in the CBIND request or response
   message as described in Section 6.1.  If both gateways seek to
   monitor liveness, each must set the LIVENESS TEST INTERVAL in the
   CBIND request or response.

   Upon receiving such a request, the gateway providing the heartbeat
   SHALL transmit LTEST messages at the specified interval.  The first
   message SHALL be sent as soon as the iFCP session enters the OPEN
   state.  LTEST messages SHALL NOT be sent when the iFCP session is not
   in the OPEN state.

   An iFCP session SHALL be terminated as described in Section 5.2.3 if:

   a) the contents of the LTEST message are incorrect, or

   b) an LTEST message is not received within twice the specified
      interval or the iFCP session has been quiescent for longer than
      twice the specified interval.

   The gateway to receive the LTEST message SHALL measure the interval
   for the first expected LTEST message from when the session is placed
   in the OPEN state.  Thereafter, the interval SHALL be measured
   relative to the last LTEST message received.

   To maximize liveness test coverage, LTEST messages SHOULD flow
   through all the gateway components used to enter and retrieve fibre
   channel frames from the IP network, including the mechanisms for
   encapsulating and de-encapsulating fibre channel frames.

   In addition to monitoring a session, information in the LTEST message
   encapsulation header may also be used to compute an estimate of
   network propagation delay, as described in Section 8.2.1.  However,
   the propagation delay limit SHALL NOT be enforced for LTEST traffic.

5.2.2.5.  Use of TCP Features and Settings

   This section describes ground rules for the use of TCP features in an
   iFCP session.  The core TCP protocol is defined in [RFC793].  TCP
   implementation requirements and guidelines are specified in
   [RFC1122].

   +-----------+------------+--------------+------------+------------+
   | Feature   | Applicable |  RFC         |  Peer-Wise | Requirement|
   |           | RFCs       |  Status      |  Agreement | Level      |
   |           |            |              |  Required? |            |
   +===========+============+==============+============+============+
   | Keep Alive| [RFC1122]  |  None        |  No        | Should not |
   |           |(discussion)|              |            | use        |
   +-----------+------------+--------------+------------+------------+
   | Tiny      | [RFC896]   |  Standard    |  No        | Should not |
   | Segment   |            |              |            | use        |
   | Avoidance |            |              |            |            |
   | (Nagle)   |            |              |            |            |
   +-----------+------------+--------------+------------+------------+
   | Window    | [RFC1323]  |  Proposed    |  No        | Should use |
   | Scale     |            |  Standard    |            |            |
   +-----------+------------+--------------+------------+------------+
   | Wrapped   | [RFC1323]  |  Proposed    |  No        | SHOULD use |
   | Sequence  |            |  Standard    |            |            |
   | Protection|            |              |            |            |
   | (PAWS)    |            |              |            |            |
   +-----------+------------+--------------+------------+------------+

                 Table 1. Usage of Optional TCP Features

   The following sections describe these options in greater detail.

5.2.2.5.1.  Keep Alive

   Keep Alive speeds the detection and cleanup of dysfunctional TCP
   connections by sending traffic when a connection would otherwise be
   idle.  The issues are discussed in [RFC1122].

   In order to test the device more comprehensively, fibre channel
   applications, such as storage, may implement an equivalent keep alive
   function at the FC-4 level.  Alternatively, periodic liveness test
   messages may be issued as described in Section 5.2.2.4.  Because of
   these more comprehensive end-to-end mechanisms and the considerations
   described in [RFC1122], keep alive at the transport layer should not
   be implemented.

5.2.2.5.2.  'Tiny' Segment Avoidance (Nagle)

   The Nagle algorithm described in [RFC896] is designed to avoid the
   overhead of small segments by delaying transmission in order to
   agglomerate transfer requests into a large segment.  In iFCP, such
   small transfers often contain I/O requests.  The transmission delay
   of the Nagle algorithm may decrease I/O throughput.  Therefore, the
   Nagle algorithm should not be used.

5.2.2.5.3.  Window Scale

   Window scaling, as specified in [RFC1323], allows full use of links
   with large bandwidth - delay products and should be supported by an
   iFCP implementation.

5.2.2.5.4.  Wrapped Sequence Protection (PAWS)

   TCP segments are identified with 32-bit sequence numbers.  In
   networks with large bandwidth - delay products, it is possible for
   more than one TCP segment with the same sequence number to be in
   flight.  In iFCP, receipt of such a sequence out of order may cause
   out-of-order frame delivery or data corruption.  Consequently, this
   feature SHOULD be supported as described in [RFC1323].

5.2.3.  Terminating iFCP Sessions

   iFCP sessions SHALL be terminated in response to one of the events in
   Table 2:

   +-------------------------------------------+---------------------+
   |                Event                      |     iFCP Sessions   |
   |                                           |     to Terminate    |
   +===========================================+=====================+
   | PLOGI terminated with LS_RJT response     | Peer N_PORT         |
   +-------------------------------------------+---------------------+
   | State change notification indicating      | All iFCP Sessions   |
   | N_PORT removal or reconfiguration.        | from the            |
   |                                           | reconfigured N_PORT |
   +-------------------------------------------+---------------------+
   | LOGO ACC response from peer N_PORT        | Peer N_PORT         |
   +-------------------------------------------+---------------------+
   | ACC response to LOGO ELS sent to F_PORT   | All iFCP sessions   |
   | server (D_ID = 0xFF-FF-FE) (fabric        | from the originating|
   | logout)                                   | N_PORT              |
   +-------------------------------------------+---------------------+
   | Implicit N_PORT LOGO as defined in        | All iFCP sessions   |
   | [FC-FS]                                   | from the N_PORT     |
   |                                           | logged out          |
   +-------------------------------------------+---------------------+
   | LTEST Message Error (see Section 5.2.2.4) | Peer N_PORT         |
   +-------------------------------------------+---------------------+
   | Non fatal encapsulation error as          | Peer N_PORT         |
   | specified in Section 5.3.3                |                     |
   +-------------------------------------------+---------------------+
   | Failure of the TCP connection associated  | Peer N_PORT         |
   | with the iFCP session                     |                     |
   +-------------------------------------------+---------------------+
   | Receipt of an UNBIND session control      | Peer N_PORT         |
   | message                                   |                     |
   +-------------------------------------------+---------------------+
   | Gateway enters the Unsynchronized state   | All iFCP sessions   |
   | (see Section 8.2.1)                       |                     |
   +-------------------------------------------+---------------------+
   | Gateway detects incorrect address mode    | All iFCP sessions   |
   | to peer gateway(see Section 4.6.2)        | with peer gateway   |
   +-------------------------------------------+---------------------+

                   Table 2. Session Termination Events

   If a session is being terminated due to an incorrect address mode
   with the peer gateway, the TCP connection SHALL be aborted by means
   of a connection reset (RST) without performing an UNBIND.  Otherwise,
   if the TCP connection is still open following the event, the gateway
   SHALL shut down the connection as follows:

   a) Stop sending fibre channel frames over the TCP connection.

   b) Discard all incoming traffic, except for an UNBIND session control
      message.

   c) If an UNBIND message is received at any time, return a response in
      accordance with Section 6.2.

   d) If session termination was not triggered by an UNBIND message,
      issue the UNBIND session control message, as described in Section
      6.2.

   e) If the UNBIND message completes with a status of Success, the TCP
      connection MAY remain open at the discretion of either gateway and
      may be kept in a pool of unbound connections in order to speed up
      the creation of a new iFCP session.

      If the UNBIND fails for any reason, the TCP connection MUST be
      terminated.  In this case, the connection SHOULD be aborted with a
      connection reset (RST).

   For each terminated session, the session descriptor SHALL be deleted.
   If a session was terminated by an event other than an implicit LOGO
   or a LOGO ACC response, the gateway shall issue a LOGO to the locally
   attached N_PORT on behalf of the remote N_PORT.

   To recover resources, either gateway may spontaneously close an
   unbound TCP connection at any time.  If a gateway terminates a
   connection with a TCP close operation, the peer gateway MUST respond
   by executing a TCP close.

5.3.  Fibre Channel Frame Encapsulation

   This section describes the iFCP encapsulation of fibre channel
   frames.  The encapsulation complies with the common encapsulation
   format defined in [ENCAP], portions of which are included here for
   convenience.

   The format of an encapsulated frame is shown below:

                     +--------------------+
                     |       Header       |
                     +--------------------+-----+
                     |        SOF         |   f |
                     +--------------------+ F r |
                     |  FC frame content  | C a |
                     +--------------------+   m |
                     |        EOF         |   e |
                     +--------------------+-----+

                   Figure 12. Encapsulation Format

   The encapsulation consists of a 7-word header, an SOF delimiter word,
   the FC frame (including the fibre channel CRC), and an EOF delimiter
   word.  The header and delimiter formats are described in the
   following sections.

5.3.1.  Encapsulation Header Format

   W|------------------------------Bit------------------------------|
   o|                                                               |
   r|                    1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3|
   d|0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1|
    +---------------+---------------+---------------+---------------+
   0|   Protocol#   |    Version    |  -Protocol#   |   -Version    |
    +---------------+---------------+---------------+---------------+
   1|                  Reserved (must be zero)                      |
    +---------------+---------------+---------------+---------------+
   2| LS_COMMAND_ACC|  iFCP Flags   |     SOF       |      EOF      |
    +-----------+---+---------------+-----------+---+---------------+
   3|   Flags   |   Frame Length    |   -Flags  |   -Frame Length   |
    +-----------+-------------------+-----------+-------------------+
   4|                      Time Stamp [integer]                     |
    +---------------------------------------------------------------+
   5|                      Time Stamp [fraction]                    |
    +---------------------------------------------------------------+
   6|                              CRC                              |
    +---------------------------------------------------------------+

                 Figure 13. Encapsulation Header Format

   Common Encapsulation Fields:

   Protocol#            IANA-assigned protocol number identifying the
                        protocol using the encapsulation.  For iFCP, the
                        value assigned by [ENCAP] is 2.

   Version              Encapsulation version, as specified in [ENCAP].

   -Protocol#           Ones complement of the Protocol#.

   -Version             Ones complement of the version.

   Flags                Encapsulation flags (see 5.3.1.1).

   Frame Length         Contains the length of the entire FC
                        Encapsulated frame, including the FC
                        Encapsulation Header and the FC frame (including
                        SOF and EOF words) in units of 32-bit words.

   -Flags               Ones complement of the Flags field.

   -Frame Length        Ones complement of the Frame Length field.

   Time Stamp [integer] Integer component of the frame time stamp, as
                        specified in [ENCAP].

   Time Stamp           Fractional component of the time stamp,
   [fraction]           as specified in [ENCAP].

   CRC                  Header CRC.  MUST be valid for iFCP.

   The time stamp fields are used to enforce the limit on the lifetime
   of a fibre channel frame as described in Section 8.2.1.

   iFCP-Specific Fields:

   LS_COMMAND_ACC       For a special link service ACC response to be
                        processed by iFCP, the LS_COMMAND_ACC field
                        SHALL contain a copy of bits 0 through 7 of the
                        LS_COMMAND to which the ACC applies.  Otherwise,
                        the LS_COMMAND_ACC field SHALL be set to zero.

   iFCP Flags           iFCP-specific flags (see below).

   SOF                  Copy of the SOF delimiter encoding (see Section
                        5.3.2).

   EOF                  Copy of the EOF delimiter encoding (see Section
                        5.3.2).

   The iFCP flags word has the following format:

        |------------------------Bit----------------------------|
        |                                                       |
        |   8      9     10     11     12     13     14    15   |
        +------+------+------+------+------+------+------+------+
        |             Reserved             | SES  | TRP  |  SPC |
        +------+------+------+------+------+------+------+------+

                       Figure 14. iFCP Flags Word

   iFCP Flags:

   SES         1 = Session control frame (TRP and SPC MUST be 0)

   TRP         1 = Address transparent mode enabled

               0 = Address translation mode enabled

   SPC         1 = Frame is part of a link service message requiring
                   special processing by iFCP prior to forwarding to the
                   destination N_PORT.

5.3.1.1.  Common Encapsulation Flags

   The iFCP usage of the common encapsulation flags defined in [ENCAP]
   is shown in Figure 15:

         |------------------------Bit--------------------------|
         |                                                     |
         |    0        1        2        3        4        5   |
         +--------------------------------------------+--------+
         |                  Reserved                  |  CRCV  |
         +--------------------------------------------+--------+

               Figure 15. iFCP Common Encapsulation Flags

   For iFCP, the CRC field MUST be valid, and CRCV MUST be set to one.

5.3.2.  SOF and EOF Delimiter Fields

   The format of the delimiter fields is shown below.

   W|------------------------------Bit------------------------------|
   o|                                                               |
   r|                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3|
   d|0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1|
    +---------------+---------------+---------------+---------------+
   0|      SOF      |      SOF      |     -SOF      |     -SOF      |
    +---------------+---------------+---------------+---------------+
   1|                                                               |
    +-----                   FC frame content                  -----+
    |                                                               |
    +---------------+---------------+---------------+---------------+
   n|      EOF      |      EOF      |     -EOF      |     -EOF      |
    +---------------+---------------+---------------+---------------+

                Figure 16. FC Frame Encapsulation Format

   SOF (bits 0-7 and bits 8-15 in word 0):  iFCP uses the following
   subset of the SOF fields specified in [ENCAP].  For convenience,
   these are reproduced in Table 3.  The authoritative encodings should
   be obtained from [ENCAP].

                           +-------+----------+
                           |  FC   |          |
                           |  SOF  | SOF Code |
                           +-------+----------+
                           | SOFi2 |   0x2D   |
                           | SOFn2 |   0x35   |
                           | SOFi3 |   0x2E   |
                           | SOFn3 |   0x36   |
                           +-------+----------+

       Table 3. Translation of FC SOF Values to SOF Field Contents

   -SOF (bits 16-23 and 24-31 in word 0): The -SOF fields contain the
   ones complement the value in the SOF fields.

   EOF (bits 0-7 and 8-15 in word n):  iFCP uses the following subset of
   EOF fields specified in [ENCAP].  For convenience, these are
   reproduced in Table 4.  The authoritative encodings should be
   obtained from [ENCAP].

                           +-------+----------+
                           |  FC   |          |
                           |  EOF  | EOF Code |
                           +-------+----------+
                           | EOFn  |   0x41   |
                           | EOFt  |   0x42   |
                           +-------+----------+

       Table 4. Translation of FC EOF Values to EOF Field Contents

   -EOF (bits 16-23 and 24-31 in word n): The -EOF fields contain the
   ones complement the value in the EOF fields.

   iFCP implementations SHALL place a copy of the SOF and EOF delimiter
   codes in the appropriate header fields.

5.3.3.  Frame Encapsulation

   A fibre channel Frame to be encapsulated MUST first be validated as
   described in [FC-FS].  Any frames received from a locally attached
   fibre channel device that do not pass the validity tests in [FC-FS]
   SHALL be discarded by the gateway.

   If the frame is a PLOGI ELS, the creation of an iFCP session, as
   described in Section 7.3.1.7, may precede encapsulation.  Once the
   session has been created, frame encapsulation SHALL proceed as
   follows.

   The S_ID and D_ID fields in the frame header SHALL be referenced to
   look up the iFCP session descriptor (see Section 5.2.2.2).  If no
   iFCP session descriptor exists, the frame SHALL be discarded.

   Frame types submitted for encapsulation and forwarding on the IP
   network SHALL have one of the SOF delimiters in Table 3 and an EOF
   delimiter from Table 4.  Other valid frame types MUST be processed
   internally by the gateway as specified in the appropriate fibre
   channel specification.

   If operating in address translation mode and processing a special
   link service message requiring the inclusion of supplemental data,
   the gateway SHALL format the frame payload and add the supplemental
   information specified in Section 7.1.  The gateway SHALL then
   calculate a new FC CRC on the reformatted frame.

   Otherwise, the frame contents SHALL NOT be modified and the gateway
   MAY encapsulate and transmit the frame image without recalculating
   the FC CRC.

   The frame originator MUST then create and fill in the header and the
   SOF and EOF delimiter words, as specified in Sections 5.3.1 and
   5.3.2.

5.3.4.  Frame De-encapsulation

   The receiving gateway SHALL perform de-encapsulation as follows:

   Upon receiving the encapsulated frame, the gateway SHALL check the
   header CRC.  If the header CRC is valid, the receiving gateway SHALL
   check the iFCP flags field.  If one of the error conditions in Table
   5 is detected, the gateway SHALL handle the error as specified in
   Section 5.2.3.

      +------------------------------+-------------------------+
      |      Condition               |      Error Type         |
      +==============================+=========================+
      | Header CRC Invalid           | Encapsulation error     |
      +------------------------------+-------------------------+
      | SES = 1, TRP or SPC not 0    | Encapsulation error     |
      +------------------------------+-------------------------+
      | SES = 0, TRP set incorrectly | Incorrect address mode  |
      +------------------------------+-------------------------+

                 Table 5. Encapsulation Header Errors

   The receiving gateway SHALL then verify the frame propagation delay
   as described in Section 8.2.1.  If the propagation delay is too long,
   the frame SHALL be discarded.  Otherwise, the gateway SHALL check the
   SOF and EOF in the encapsulation header.  A frame SHALL be discarded
   if it has an SOF code that is not in Table 3 or an EOF code that is
   not in Table 4.

   The gateway SHALL then de-encapsulate the frame as follows:

   a) Check the FC CRC and discard the frame if the CRC is invalid.

   b) If operating in address translation mode, replace the S_ID field
      with the N_PORT alias of the frame originator, and the D_ID with
      the N_PORT ID, of the frame recipient.  Both parameters SHALL be
      obtained from the iFCP session descriptor.

   c) If processing a special link service message, replace the frame
      with a copy whose payload has been modified as specified in
      Section 7.1.

   The de-encapsulated frame SHALL then be forwarded to the N_PORT
   specified in the D_ID field.  If the frame contents have been
   modified by the receiving gateway, a new FC CRC SHALL be calculated.

6.  TCP Session Control Messages

   TCP session control messages are used to create and manage an iFCP
   session as described in Section 5.2.2.  They are passed between peer
   iFCP Portals and are only processed within the iFCP layer.

   The message format is based on the fibre channel extended link
   service message template shown below.

    Word
      0<--Bits-->7 8<---------------Bits------------------------>31
     +------------+------------------------------------------------+
    0| R_CTL      |            D_ID [0x00 00 00]                   |
     |[Req = 0x22]| [Destination of extended link Service request] |
     |[Rep = 0x23]|                                                |
     +------------+------------------------------------------------+
    1| CS_CTL     |            S_ID [0x00 00 00]                   |
     | [0x0]      | [Source of extended link service request]      |
     +------------+------------------------------------------------+
    2|TYPE [0x1]  |               F_CTL [0]                        |
     +------------+------------------+-----------------------------+
    3|SEQ_ID      | DF_CTL [0x00]    |          SEQ_CNT [0x00]     |
     |[0x0]       |                  |                             |
     +------------+------------------+-----------------------------+
    4|         OX_ID [0x0000]        |          RX_ID_[0x0000]     |
     +-------------------------------+-----------------------------+
    5|                           Parameter                         |
     |                         [ 00 00 00 00 ]                     |
     +-------------------------------------------------------------+
    6|                        LS_COMMAND                           |
     |                [Session Control Command Code]               |
     +-------------------------------------------------------------+
    7|                                                             |
    .|             Additional Session Control Parameters           |
    .|                      ( if any )                             |
    n|                                                             |
     +=============================================================+
    n|                    Fibre Channel CRC                        |
    +|                                                             |
    1+=============================================================+

             Figure 17. Format of Session Control Message

   The LS_COMMAND value for the response remains the same as that used
   for the request.

   The session control frame is terminated with a fibre channel CRC.
   The frame SHALL be encapsulated and de-encapsulated according to the
   rules specified in Section 5.3.

   The encapsulation header for the link Service frame carrying a
   session control message SHALL be set as follows:

   Encapsulation Header Fields:

      LS_COMMAND_ACC       0

      iFCP Flags           SES = 1

                           TRP = 0

                           INT = 0

      SOF code             SOFi3 encoding (0x2E)

      EOF code             EOFt encoding (0x42)

   The encapsulation time stamp words SHALL be set as described for each
   message type.

   The SOF and EOF delimiter words SHALL be set based on the SOF and EOF
   codes specified above.

   Table 6 lists the values assigned to byte 0 of the LS_COMMAND field
   for iFCP session control messages.

   +--------------+-------------------------+----------+-------------+
   | LS_COMMAND   |       Function          | Mnemonic | iFCP        |
   | field, byte 0|                         |          | Support     |
   +--------------+-------------------------+----------+-------------+
   |    0xE0      |    Connection Bind      |  CBIND   |  REQUIRED   |
   +--------------+-------------------------+----------+-------------+
   |    0xE4      |    Unbind Connection    |  UNBIND  |  REQUIRED   |
   +--------------+-------------------------+----------+-------------+
   |    0xE5      | Test Connection Liveness|  LTEST   |  REQUIRED   |
   +--------------+-------------------------+----------+-------------+
   | 0x01-0x7F    |    Vendor-Specific      |          |             |
   +--------------+-------------------------+----------+-------------+
   |    0x00      | Reserved -- Unassignable|          |             |
   +--------------+-------------------------+----------+-------------+
   | All other    |    Reserved             |          |             |
   | values       |                         |          |             |
   +--------------+-------------------------+----------+-------------+

        Table 6. Session Control LS_COMMAND Field, Byte 0 Values

6.1.  Connection Bind (CBIND)

   As described in Section 5.2.2.2, the CBIND message and response are
   used to bind an N_PORT login to a specific TCP connection and
   establish an iFCP session.  In the CBIND request message, the source
   and destination N_PORTs are identified by their worldwide port names.
   The time stamp words in the encapsulation header SHALL be set to zero
   in the request and response message frames.

   The following shows the format of the CBIND request.

      +------+------------+------------+-----------+----------+
      | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
      +------+------------+------------+-----------+----------+
      | 0    | Cmd = 0xE0 |   0x00     |   0x00    |  0x00    |
      +------+------------+------------+-----------+----------+
      | 1    |  LIVENESS TEST INTERVAL | Addr Mode | iFCP Ver |
      |      |        (Seconds)        |           |          |
      +------+-------------------------+-----------+----------+
      | 2    |                  USER INFO                     |
      +------+------------+------------+-----------+----------+
      | 3    |                                                |
      +------+              SOURCE N_PORT NAME                |
      | 4    |                                                |
      +------+------------------------------------------------+
      | 5    |                                                |
      +------+              DESTINATION N_PORT NAME           |
      | 6    |                                                |
      +------+------------------------------------------------+

   Addr Mode:             The addressing mode of the originating
                          gateway.  0 = Address Translation mode;
                          1 = Address Transparent mode.

   iFCP Ver:              iFCP version number.  SHALL be set to 1.

   LIVENESS TEST          If non-zero, requests that the receiving
   INTERVAL:              gateway transmit an LTEST message at the
                          specified interval in seconds.  If set to
                          zero, LTEST messages SHALL NOT be sent.

   USER INFO:             Contains any data desired by the requestor.
                          This information MUST be echoed by the
                          recipient in the CBIND response message.

   SOURCE N_PORT NAME:    The Worldwide Port Name (WWPN) of the N_PORT
                          locally attached to the gateway originating
                          the CBIND request.

   DESTINATION N_PORT     The Worldwide Port Name (WWPN) of the
   NAME:                  N_PORT locally attached to the gateway
                          receiving the CBIND request.

   The following shows the format of the CBIND response.

         +------+------------+------------+-----------+----------+
         | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0xE0 |   0x00     |   0x00    |  0x00    |
         +------+------------+------------+-----------+----------+
         | 1    |  LIVENESS TEST INTERVAL | Addr Mode | iFCP Ver |
         |      |      (Seconds)          |           |          |
         +------+-------------------------+-----------+----------+
         | 2    |                  USER INFO                     |
         +------+------------+------------+-----------+----------+
         | 3    |                                                |
         +------+               SOURCE N_PORT NAME               |
         | 4    |                                                |
         +------+------------------------------------------------+
         | 5    |                                                |
         +------+              DESTINATION N_PORT NAME           |
         | 6    |                                                |
         +------+-------------------------+----------------------+
         | 7    |        Reserved         |     CBIND Status     |
         +------+-------------------------+----------------------+
         | 8    |        Reserved         |  CONNECTION HANDLE   |
         +------+-------------------------+----------------------+

                           Total Length = 36

   Addr Mode:             The address translation mode of the
                          responding gateway.  0 = Address
                          Translation mode, 1 = Address Transparent
                          mode.

   iFCP Ver:              iFCP version number.  Shall be set to 1.

   LIVENESS TEST          If non-zero, requests that the gateway
   INTERVAL:              receiving the CBIND RESPONSE transmit an
                          LTEST message at the specified interval in
                          seconds.  If zero, LTEST messages SHALL NOT
                          be sent.

   USER INFO:             Echoes the value received in the USER INFO
                          field of the CBIND request message.

   SOURCE N_PORT NAME:    Contains the Worldwide Port Name (WWPN) of
                          the N_PORT locally attached to the gateway
                          issuing the CBIND request.

   DESTINATION N_PORT     Contains the Worldwide Port Name (WWPN) of
   NAME:                  the N_PORT locally attached to the gateway
                          issuing the CBIND response.

   CBIND STATUS:          Indicates success or failure of the CBIND
                          request.  CBIND values are shown below.

   CONNECTION HANDLE:     Contains a value assigned by the gateway to
                          identify the connection.  The connection
                          handle is required when the UNBIND
                          request is issued.

   CBIND Status       Description
   ------------       -----------

       0              Success
     1 - 15           Reserved
       16             Failed - Unspecified Reason
       17             Failed - No such device
       18             Failed - iFCP session already exists
       19             Failed - Lack of resources
       20             Failed - Incompatible address translation mode
       21             Failed - Incorrect protocol version number
       22             Failed - Gateway not Synchronized (see Section
                      8.2)
       Others         Reserved

6.2.  Unbind Connection (UNBIND)

   UNBIND is used to terminate an iFCP session and disassociate the TCP
   connection as described in Section 5.2.3.

   The UNBIND message is transmitted over the connection that is to be
   unbound.  The time stamp words in the encapsulation header shall be
   set to zero in the request and response message frames.

   The following is the format of the UNBIND request message.

         +------+------------+------------+-----------+----------+
         | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0xE4 |   0x00     |   0x00    |  0x00    |
         +------+------------+------------+-----------+----------+
         | 1    |                  USER INFO                     |
         +------+------------+------------+-----------+----------+
         | 2    |       Reserved          |  CONNECTION HANDLE   |
         +------+------------+------------+----------------------+
         | 3    |                  Reserved                      |
         +------+------------+------------+-----------+----------+
         | 4    |                  Reserved                      |
         +------+------------+------------+-----------+----------+

   USER INFO              Contains any data desired by the requestor.
                          This information MUST be echoed by the
                          recipient in the UNBIND response message.

   CONNECTION HANDLE:     Contains the gateway-assigned value from
                          the CBIND request.

   The following shows the format of the UNBIND response message.

         +------+------------+------------+-----------+----------+
         | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0xE4 |   0x00     |   0x00    |  0x00    |
         +------+------------+------------+-----------+----------+
         | 1    |                  USER INFO                     |
         +------+------------+------------+-----------+----------+
         | 2    |       Reserved          |  CONNECTION HANDLE   |
         +------+------------+------------+-----------+----------+
         | 3    |                  Reserved                      |
         +------+------------+------------+-----------+----------+
         | 4    |                  Reserved                      |
         +------+------------+------------+-----------+----------+
         | 5    |         Reserved        |     UNBIND STATUS    |
         +------+------------+------------+-----------+----------+

   USER INFO              Echoes the value received in the USER INFO
                          field of the UNBIND request message.

   CONNECTION HANDLE:     Echoes the CONNECTION HANDLE specified in
                          the UNBIND request message.

   UNBIND STATUS:         Indicates the success or failure of the
                          UNBIND request as follows:

         Unbind Status      Description
         -------------      -----------

                  0         Successful - No other status
               1 - 15       Reserved
                 16         Failed - Unspecified Reason
                 18         Failed - Connection ID Invalid
               Others       Reserved

6.3.  LTEST -- Test Connection Liveness

   The LTEST message is sent at the interval specified in the CBIND
   request or response payload.  The LTEST encapsulation time stamp
   SHALL be set as described in Section 8.2.1 and may be used by the
   receiver to compute an estimate of propagation delay.  However, the
   propagation delay limit SHALL NOT be enforced.

         +------+------------+------------+-----------+----------+
         | Word |   Byte 0   |   Byte 1   |   Byte 2  |  Byte 3  |
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0xE5 |   0x00     |   0x00    |  0x00    |
         +------+------------+------------+-----------+----------+
         | 1    |  LIVENESS TEST INTERVAL |        Reserved      |
         |      |        (Seconds)        |                      |
         +------+-------------------------+----------------------+
         | 2    |                   COUNT                        |
         +------+------------+------------+-----------+----------+
         | 3    |                                                |
         +------+              SOURCE N_PORT NAME                |
         | 4    |                                                |
         +------+------------------------------------------------+
         | 5    |                                                |
         +------+              DESTINATION N_PORT NAME           |
         | 6    |                                                |
         +------+------------------------------------------------+

   LIVENESS TEST          Copy of the LIVENESS TEST INTERVAL
   INTERVAL:              specified in the CBIND request or reply
                          message.

   COUNT:                 Monotonically increasing value, initialized
                          to 0 and incremented by one for each
                          successive LTEST message.

   SOURCE N_PORT NAME:    Contains a copy of the SOURCE N_PORT NAME
                          specified in the CBIND request.

   DESTINATION N_PORT     Contains a copy of the DESTINATION N_PORT
   NAME:                  NAME specified in the CBIND request.

7.  Fibre Channel Link Services

   Link services provide a set of fibre channel functions that allow a
   port to send control information or request another port to perform a
   specific control function.

   There are three types of link services:

   a) Basic

   b) Extended

   c) ULP-specific (FC-4)

   Each link service message (request and reply) is carried by a fibre
   channel sequence and can be segmented into multiple frames.

   The iFCP layer is responsible for transporting link service messages
   across the IP network.  This includes mapping link service messages
   appropriately from the domain of the fibre channel transport to that
   of the IP network.  This process may require special processing and
   the inclusion of supplemental data by the iFCP layer.

   Each link service MUST be processed according to one of the following
   rules:

   a) Pass-through - The link service message and reply MUST be
      delivered to the receiving N_PORT by the iFCP protocol layer
      without altering the message payload.  The link service message
      and reply are not processed by the iFCP protocol layer.

   b) Special -  Applies to a link service reply or request requiring
      the intervention of the iFCP layer before forwarding to the
      destination N_PORT.  Such messages may contain fibre channel
      addresses in the payload or may require other special processing.

   c) Rejected - When issued by a locally attached N_PORT, the specified
      link service request MUST be rejected by the iFCP gateway.  The
      gateway SHALL return an LS_RJT response with a Reason Code of 0x0B
      (Command Not Supported), and a Reason Code Explanation of 0x0 (No
      Additional Explanation).

   This section describes the processing for special link services,
   including the manner in which supplemental data is added to the
   message payload.

   Appendix A enumerates all link services and the iFCP processing
   policy that applies to each.

7.1.  Special Link Service Messages

   Special link service messages require the intervention of the iFCP
   layer before forwarding to the destination N_PORT.  Such intervention
   is required in order to:

   a) service any link service message that requires special handling,
      such as a PLOGI, and

   b) service any link service message that has an N_PORT address in the
      payload in address translation mode only .

   Unless the link service description specifies otherwise, support for
   each special link service is MANDATORY.

   Such messages SHALL be transmitted in a fibre channel frame with the
   format shown in Figure 18 for extended link services or Figure 19 for
   FC-4 link services.

    Word
      0<---Bit-->7 8<-------------------------------------------->31
     +------------+------------------------------------------------+
    0| R_CTL      |                     D_ID                       |
     |[Req = 0x22]|[Destination of extended link Service request]  |
     |[Rep = 0x23]|                                               |
     +------------+------------------------------------------------+
    1| CS_CTL     |                     S_ID                       |
     |            | [Source of extended link service request]      |
     +------------+------------------------------------------------+
    2| TYPE       |                     F_CTL                      |
     | [0x01]     |                                                |
     +------------+------------------+-----------------------------+
    3| SEQ_ID     |        DF_CTL    |          SEQ_CNT            |
     +------------+------------------+-----------------------------+
    4|          OX_ID                |             RX_ID           |
     +-------------------------------+-----------------------------+
    5|                         Parameter                           |
     |                      [ 00 00 00 00 ]                        |
     +-------------------------------------------------------------+
    6|                         LS_COMMAND                          |
     |               [Extended Link Service Command Code]          |
     +-------------==----------------------------------------------+
    7|                                                             |
    .|             Additional Service Request Parameters           |
    .|                      ( if any )                             |
    n|                                                             |
     +-------------------------------------------------------------+

          Figure 18. Format of an Extended Link Service Frame

    Word
      0<---Bit-->7 8<-------------------------------------------->31
     +------------+------------------------------------------------+
    0| R_CTL      |                     D_ID                       |
     |[Req = 0x32]|   [Destination of FC-4 link Service request]   |
     |[Rep = 0x33]|                                                |
     +------------+------------------------------------------------+
    1| CS_CTL     |                     S_ID                       |
     |            |    [Source of FC-4 link service request]       |
     +------------+------------------------------------------------+
    2| TYPE       |                     F_CTL                      |
     | (FC-4      |                                                |
     |  specific) |                                                |
     +------------+------------------+-----------------------------+
    3| SEQ_ID     |        DF_CTL    |          SEQ_CNT            |
     +------------+------------------+-----------------------------+
    4|         OX_ID                 |             RX_ID           |
     +-------------------------------+-----------------------------+
    5|                        Parameter                            |
     |                     [ 00 00 00 00 ]                         |
     +-------------------------------------------------------------+
    6|                        LS_COMMAND                           |
     |               [FC-4 Link Service Command Code]              |
     +-------------------------------------------------------------+
    7|                                                             |
    .|             Additional Service Request Parameters           |
    .|                      ( if any )                             |
    n|                                                             |
     +-------------------------------------------------------------+

            Figure 19. Format of an FC-4 Link Service Frame

7.2.  Link Services Requiring Payload Address Translation

   This section describes the handling for link service frames
   containing N_PORT addresses in the frame payload.  Such addresses
   SHALL only be translated when the gateway is operating in address
   translation mode.  When operating in address transparent mode, these
   addresses SHALL NOT be translated, and such link service messages
   SHALL NOT be sent as special frames unless other processing by the
   iFCP layer is required.

   Supplemental data includes information required by the receiving
   gateway to convert an N_PORT address in the payload to an N_PORT
   address in the receiving gateway's address space.  The following
   rules define the manner in which such supplemental data shall be
   packaged and referenced.

   For an N_PORT address field, the gateway originating the frame MUST
   set the value in the payload to identify the address translation type
   as follows:

      0x00 00 01 - The gateway receiving the frame from the IP network
      MUST replace the contents of the field with the N_PORT alias of
      the frame originator.  This translation type MUST be used when the
      address to be converted is that of the source N_PORT.

      0x00 00 02 - The gateway receiving the frame from the IP network
      MUST replace the contents of the field with the N_PORT ID of the
      destination N_PORT.  This translation type MUST be used when the
      address to be converted is that of the destination N_PORT

      0x00 00 03 - The gateway receiving the frame from the IP network
      MUST reference the specified supplemental data to set the field
      contents.  The supplemental information is the 64-bit worldwide
      identifier of the N_PORT, as set forth in the fibre channel
      specification [FC-FS].  If not otherwise part of the link service
      payload, this information MUST be appended in accordance with the
      applicable link service description.  Unless specified otherwise,
      this translation type SHALL NOT be used if the address to be
      converted corresponds to that of the frame originator or
      recipient.

   Since fibre channel addressing rules prohibit the assignment of
   fabric addresses with a domain ID of 0, the above codes will never
   correspond to valid N_PORT fabric IDs.

   If the sending gateway cannot obtain the worldwide identifier of an
   N_PORT, the gateway SHALL terminate the request with an LS_RJT
   message as described in [FC-FS].  The Reason Code SHALL be set to
   0x07 (protocol error), and the Reason Explanation SHALL be set to
   0x1F (Invalid N_PORT identifier).

   Supplemental data is sent with the link service request or ACC frames
   in one of the following ways:

   a) By appending the necessary data to the end of the link service
      frame.

   b) By extending the sequence with additional frames.

   In the first case, a new frame SHALL be created whose length includes
   the supplemental data.  The procedure for extending the link service
   sequence with additional frames is dependent on the link service
   type.

   For each field requiring address translation, the receiving gateway
   SHALL reference the translation type encoded in the field and replace
   it with the N_PORT address as shown in Table 7.

         +------------------+------------------------------------+
         |    Translation   |          N_PORT Translation        |
         |    Type Code     |                                    |
         +------------------+------------------------------------+
         | 0x00 00 01       | Replace field contents with N_PORT |
         |                  | alias of frame originator.         |
         +------------------+------------------------------------+
         | 0x00 00 02       | Replace field contents with N_PORT |
         |                  | ID of frame recipient.             |
         +------------------+------------------------------------+
         |                  | Lookup N_PORT via iSNS query.      |
         |                  | If locally attached, replace with  |
         | 0x00 00 03       | N_PORT ID.                         |
         |                  | If remotely attached, replace with |
         |                  | N_PORT alias from remote N_PORT.   |
         |                  | descriptor (see Section 5.2.2.1).  |
         +------------------+------------------------------------+

                 Table 7. Link Service Address Translation

   For translation type 3, the receiving gateway SHALL obtain the
   information needed to fill in the field in the link service frame
   payload by converting the specified N_PORT worldwide identifier to a
   gateway IP address and N_PORT ID.  This information MUST be obtained
   through an iSNS name server query.  If the query is unsuccessful, the
   gateway SHALL terminate the request with an LS_RJT response message
   as described in [FC-FS].  The Reason Code SHALL be set to 0x07
   (protocol error), and the Reason Explanation SHALL be set to 0x1F
   (Invalid N_PORT identifier).

   After applying the supplemental data, the receiving gateway SHALL
   forward the resulting link service frames to the destination N_PORT
   with the supplemental information removed.

7.3.  Fibre Channel Link Services Processed by iFCP

   The following Extended and FC-4 Link Service Messages must receive
   special processing.

         Extended Link Service            LS_COMMAND   Mnemonic
         Messages                         ----------   --------
         ----------------------
         Abort Exchange                  0x06 00 00 00 ABTX
         Discover Address                0x52 00 00 00 ADISC
         Discover Address Accept         0x02 00 00 00 ADISC ACC
         FC Address Resolution           0x55 00 00 00 FARP-REPLY
         Protocol Reply
         FC Address Resolution           0x54 00 00 00 FARP-REQ
         Protocol Request
         Logout                          0x05 00 00 00 LOGO
         Port Login                      0x30 00 00 00 PLOGI
         Read Exchange Concise           0x13 00 00 00 REC
         Read Exchange Concise           0x02 00 00 00 REC ACC
         Accept
         Read Exchange Status Block      0x08 00 00 00 RES
         Read Exchange Status Block      0x02 00 00 00 RES ACC
         Accept
         Read Link Error Status          0x0F 00 00 00 RLS
         Block
         Read Sequence Status Block      0x09 00 00 00 RSS
         Reinstate Recovery              0x12 00 00 00 RRQ
         Qualifier
         Request Sequence                0x0A 00 00 00 RSI
         Initiative
         Scan Remote Loop                0x7B 00 00 00 SRL
         Third Party Process Logout      0x24 00 00 00 TPRLO
         Third Party Process Logout      0x02 00 00 00 TPRLO ACC
         Accept

         FC-4 Link Service Messages       LS_COMMAND   Mnemonic
         --------------------------       ----------   --------
         FCP Read Exchange Concise       0x13 00 00 00 FCP REC
         FCP Read Exchange Concise       0x02 00 00 00 FCP REC
         Accept                                        ACC

   Each encapsulated fibre channel frame that is part of a special link
   service MUST have the SPC bit set to one in the iFCP FLAGS field of
   the encapsulation header, as specified in Section 5.3.1.  If an ACC
   link service response requires special processing, the responding
   gateway SHALL place a copy of LS_COMMAND bits 0 through 7, from the

   link service request frame, in the LS_COMMAND_ACC field of the ACC
   encapsulation header.  Supplemental data (if any) MUST be appended as
   described in the following section.

   The format of each special link service message, including
   supplemental data, where applicable, is shown in the following
   sections.  Each description shows the basic format, as specified in
   the applicable FC standard, followed by supplemental data as shown in
   the example below.

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    |                  LS_COMMAND                    |
         +------+------------+------------+-----------+----------+
         | 1    |                                                |
         | .    |                                                |
         | .    |          Link Service Frame Payload            |
         |      |                                                |
         | n    |                                                |
         +======+============+============+===========+==========+
         | n+1  |                                                |
         |  .   |            Supplemental Data                   |
         |  .   |               (if any)                         |
         | n+k  |                                                |
         +======+================================================+

               Figure 20. Special Link Service Frame Payload

7.3.1.  Special Extended Link Services

   The following sections define extended link services for which
   special processing is required.

7.3.1.1.  Abort Exchange (ABTX)

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x6  |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | RRQ Status |     Exchange Originator S_ID      |
         +------+------------+------------+-----------+----------+
         | 2    |   OX_ID of Tgt exchange | RX_ID of tgt exchange|
         +------+------------+------------+-----------+----------+
         | 3-10 |  Optional association header (32 bytes         |
         +======+============+============+===========+==========+

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)     ------------
                                -----------

         Exchange Originator        1, 2              N/A
         S_ID

         Other Special Processing:

            None.

7.3.1.2.  Discover Address (ADISC)

      Format of ADISC ELS:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x52 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Reserved   |  Hard address of ELS Originator   |
         +------+------------+------------+-----------+----------+
         | 2-3  |     Port Name of Originator                    |
         +------+------------+------------+-----------+----------+
         | 4-5  |     Node Name of originator                    |
         +------+------------+------------+-----------+----------+
         | 6    |  Rsvd      |  N_PORT ID  of ELS Originator     |
         +======+============+============+===========+==========+

         Fields Requiring       Translation    Supplemental Data
         Address Translation     Type (see       (type 3 only)
         -------------------    Section 7.2)     -------------
                                ------------

         N_PORT ID of ELS            1                N/A
         Originator

         Other Special Processing:

            The Hard Address of the ELS originator SHALL be set to 0.

7.3.1.3.  Discover Address Accept (ADISC ACC)

      Format of ADISC ACC ELS:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x20 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Reserved   |  Hard address of ELS Originator   |
         +------+------------+------------+-----------+----------+
         | 2-3  |     Port Name of Originator                    |
         +------+------------+------------+-----------+----------+
         | 4-5  |     Node Name of originator                    |
         +------+------------+------------+-----------+----------+
         | 6    |  Rsvd      |  N_PORT ID of ELS Originator      |
         +======+============+============+===========+==========+

         Fields Requiring       Translation    Supplemental Data
         Address Translation     Type (see       (type 3 only)
         -------------------    Section 7.2)     -------------
                                ------------

         N_PORT ID of ELS            1                N/A
         Originator

         Other Special Processing:

            The Hard Address of the ELS originator SHALL be set to 0.

7.3.1.4.  FC Address Resolution Protocol Reply (FARP-REPLY)

   The FARP-REPLY ELS is used in conjunction with the FARP-REQ ELS (see
   Section 7.3.1.5) to perform the address resolution services required
   by the FC-VI protocol [FC-VI] and the fibre channel mapping of IP and
   ARP specified in RFC 2625 [RFC2625].

      Format of FARP-REPLY ELS:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x55 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Match Addr |  Requesting N_PORT Identifier     |
         |      | Code Points|                                   |
         +------+------------+------------+-----------+----------+
         | 2    | Responder  |  Responding N_PORT Identifier     |
         |      | Action     |                                   |
         +------+------------+------------+-----------+----------+
         | 3-4  |     Requesting N_PORT Port_Name                |
         +------+------------+------------+-----------+----------+
         | 5-6  |     Requesting N_PORT Node_Name                |
         +------+------------+------------+-----------+----------+
         | 7-8  |     Responding N_PORT Port_Name                |
         +------+------------+------------+-----------+----------+
         | 9-10 |     Responding N_PORT Node_Name                |
         +------+------------+------------+-----------+----------+
         | 11-14|     Requesting N_PORT IP Address               |
         +------+------------+------------+-----------+----------+
         | 15-18|     Responding N_PORT IP Address               |
         +======+============+============+===========+==========+

         Fields Requiring       Translation    Supplemental Data
         Address Translation     Type (see       (type 3 only)
         -------------------    Section 7.2)   -----------------
                                ------------

         Requesting N_PORT           2                N/A
         Identifier

         Responding N_PORT           1                N/A
         Identifier

         Other Special Processing:

            None.

7.3.1.5.  FC Address Resolution Protocol Request (FARP-REQ)

   The FARP-REQ ELS is used in conjunction with the FC-VI protocol
   [FC-VI] and IP-to-FC mapping of RFC 2625 [RFC2625] to perform IP and
   FC address resolution in an FC fabric.  The FARP-REQ ELS is usually
   directed to the fabric broadcast server at well-known address
   0xFF-FF-FF for retransmission to all attached N_PORTs.

   Section 9.4 describes the iFCP implementation of FC broadcast server
   functionality in an iFCP fabric.

      Format of FARP_REQ ELS:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x54 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Match Addr |  Requesting N_PORT Identifier     |
         |      | Code Points|                                   |
         +------+------------+------------+-----------+----------+
         | 2    | Responder  |  Responding N_PORT Identifier     |
         |      | Action     |                                   |
         +------+------------+------------+-----------+----------+
         | 3-4  |     Requesting N_PORT Port_Name                |
         +------+------------+------------+-----------+----------+
         | 5-6  |     Requesting N_PORT Node_Name                |
         +------+------------+------------+-----------+----------+
         | 7-8  |     Responding N_PORT Port_Name                |
         +------+------------+------------+-----------+----------+
         | 9-10 |     Responding N_PORT Node_Name                |
         +------+------------+------------+-----------+----------+
         | 11-14|     Requesting N_PORT IP Address               |
         +------+------------+------------+-----------+----------+
         | 15-18|     Responding N_PORT IP Address               |
         +======+============+============+===========+==========+

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)  -----------------
                                -----------

         Requesting N_PORT           3        Requesting N_PORT
         Identifier                           Port Name

         Responding N_PORT           3        Responding N_PORT
         Identifier                           Port Name

         Other Special Processing:

            None.

7.3.1.6.  Logout (LOGO) and LOGO ACC

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x5  |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Rsvd       |     N_PORT ID being logged out    |
         +------+------------+------------+-----------+----------+
         | 2-3  |  Port name of the LOGO originator (8 bytes)    |
         +======+============+============+===========+==========+

   This ELS SHALL always be sent as a special ELS regardless of the
   translation mode in effect.

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)   ---------------
                                -----------

         N_PORT ID Being             1               N/A
         Logged Out

         Other Special Processing:

            See Section 5.2.3.

7.3.1.7.  Port Login (PLOGI) and PLOGI ACC

   A PLOGI ELS establishes fibre channel communications between two
   N_PORTs and triggers the creation of an iFCP session if one does not
   exist.

   The PLOGI request and ACC response carry information identifying the
   originating N_PORT, including a specification of its capabilities.
   If the destination N_PORT accepts the login request, it sends an
   Accept response (an ACC frame with PLOGI payload) specifying its
   capabilities.  This exchange establishes the operating environment
   for the two N_PORTs.

   The following figure is duplicated from [FC-FS], and shows the PLOGI
   message format for both the request and Accept (ACC) response.  An
   N_PORT will reject a PLOGI request by transmitting an LS_RJT message
   containing no payload.

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x3  |   0x00     |    0x00   |   0x00   |
         |      | Acc = 0x2  |            |           |          |
         +------+------------+------------+-----------+----------+
         | 1-4  |            Common Service Parameters           |
         +------+------------+------------+-----------+----------+
         | 5-6  |            N_PORT Name                         |
         +------+------------+------------+-----------+----------+
         | 7-8  |            Node Name                           |
         +------+------------+------------+-----------+----------+
         | 9-12 |            Class 1 Service Parameters          |
         +------+------------+------------+-----------+----------+
         |13-17 |            Class 2 Service Parameters          |
         +------+------------+------------+-----------+----------+
         |18-21 |            Class 3 Service Parameters          |
         +------+------------+------------+-----------+----------+
         |22-25 |            Class 4 Service Parameters          |
         +------+------------+------------+-----------+----------+
         |26-29 |            Vendor Version Level                |
         +======+============+============+===========+==========+

            Figure 21. Format of PLOGI Request and ACC Payloads

   Details of the above fields, including common and class-based service
   parameters, can be found in [FC-FS].

   Special Processing

      As specified in Section 5.2.2.2, a PLOGI request addressed to a
      remotely attached N_PORT MUST cause the creation of an iFCP
      session if one does not exist.  Otherwise, the PLOGI and PLOGI ACC
      payloads MUST be passed through without modification to the
      destination N_PORT using the existing iFCP session.  In either
      case, the SPC bit must be set in the frame encapsulation header as
      specified in 5.3.3.

      If the CBIND to create the iFCP session fails, the issuing gateway
      SHALL terminate the PLOGI with an LS_RJT response.  The Reason
      Code and Reason Code Explanation SHALL be selected from Table 8
      based on the CBIND failure status.

      +---------------+-------------------+---------------------+
      | CBIND Failure | LS_RJT Reason     | LS_RJT Reason Code  |
      | Status        | Code              | Explanation         |
      +===============+===================+=====================+
      | Unspecified   | Unable to Perform | No Additional       |
      | Reason (16)   | Command Request   | Explanation (0x00)  |
      |               | (0x09)            |                     |
      +---------------+-------------------+---------------------+
      | No Such       | Unable to Perform | Invalid N_PORT      |
      | Device (17)   | Command Request   | Name (0x0D)         |
      |               | (0x09)            |                     |
      +---------------+-------------------+---------------------+
      | Lack of       | Unable to Perform | Insufficient        |
      | Resources (19)| Command Request   | Resources to Support|
      |               | (0x09)            | Login (0x29)        |
      +---------------+-------------------+---------------------+
      | Incompatible  | Unable to Perform | No Additional       |
      | Address       | Command Request   | Explanation (0x00)  |
      | Translation   | (0x09)            |                     |
      | Mode (20)     |                   |                     |
      +---------------+-------------------+---------------------+
      | Incorrect iFCP| Unable to Perform | No Additional       |
      | Protocol      | Command Request   | Explanation (0x00)  |
      | version Number| (0x09)            |                     |
      | (21)          |                   |                     |
      +---------------+-------------------+---------------------+
      | Gateway Not   | Unable to Perform | No Additional       |
      | Synchronized  | Command Request   | Explanation (0x00)  |
      | (22)          | (0x09)            |                     |
      +---------------+-------------------+---------------------+

           Table 8. PLOGI LS_RJT Status for CBIND Failures

7.3.1.8.  Read Exchange Concise (REC)

      Link Service Request Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  |Bits 16-24 |Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x13 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Rsvd       |     Exchange Originator S_ID      |
         +------+------------+------------+-----------+----------+
         | 2    |          OX_ID          |         RX_ID        |
         +======+============+============+===========+==========+
         | 3-4  |Port Name of the Exchange Originator (8 bytes)  |
         |      |   (present only for translation type 3)        |
         +======+============+============+===========+==========+

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)  -----------------
                                -----------

         Exchange Originator    1, 2, or 3    Port Name of the
         S_ID                                 Exchange Originator

         Other Special Processing:

            None.

7.3.1.9.  Read Exchange Concise Accept (REC ACC)

      Format of REC ACC Response:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  |Bits 16-24 |Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Acc = 0x02 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    |          OX_ID          |         RX_ID        |
         +------+------------+------------+-----------+----------+
         | 2    | Rsvd       | Originator Address Identifier     |
         +------+------------+------------+-----------+----------+
         | 3    | Rsvd       | Responder Address Identifier      |
         +------+------------+------------+-----------+----------+
         | 4    |       FC4VALUE  (FC-4-Dependent Value)         |
         +------+------------+------------+-----------+----------+
         | 5    |       E_STAT (Exchange Status)                 |
         +======+============+============+===========+==========+
         | 6-7  |Port Name of the Exchange Originator (8 bytes)  |
         +======+============+============+===========+==========+
         | 8-9  |Port Name of the Exchange Responder (8 bytes)   |
         +======+============+============+===========+==========+

         Fields Requiring       Translation     Supplemental Data
         Address Translation     Type (see       (type 3 only)
         -------------------    Section 7.2)    ------------------
                                -----------

         Originator Address     1, 2, or 3      Port Name of the
         Identifier                             Exchange Originator

         Responder Address      1, 2, or 3      Port Name of the
         Identifier                             Exchange Responder

   When supplemental data is required, the frame SHALL always be
   extended by 4 words as shown above.  If the translation type for the
   Originator Address Identifier or the Responder Address Identifier is
   1 or 2, the corresponding 8-byte port name SHALL be set to all zeros.

         Other Special Processing:

            None.

7.3.1.10.  Read Exchange Status Block (RES)

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x13 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Rsvd       |     Exchange Originator S_ID      |
         +------+------------+------------+-----------+----------+
         | 2    |          OX_ID          |         RX_ID        |
         +------+------------+------------+-----------+----------+
         | 3-10 |  Association Header (may be optionally req**d)  |
         +======+============+============+===========+==========+
         | 11-12| Port Name of the Exchange Originator (8 bytes) |
         +======+============+============+===========+==========+

         Fields Requiring       Translation     Supplemental Data
         Address Translation     Type (see       (type 3 only)
         -------------------    Section 7.2)    ------------------
                                -----------

         Exchange Originator    1, 2, or 3      Port Name of the
         S_ID                                   Exchange Originator

         Other Special Processing:

            None.

7.3.1.11.  Read Exchange Status Block Accept (RES ACC)

      Format of ELS Accept Response:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Acc = 0x02 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    |          OX_ID          |         RX_ID        |
         +------+------------+------------+-----------+----------+
         | 2    | Rsvd       | Exchange Originator N_PORT ID     |
         +------+------------+------------+-----------+----------+
         | 3    | Rsvd       | Exchange Responder N_PORT ID      |
         +------+------------+------------+-----------+----------+
         | 4    |          Exchange Status Bits                  |
         +------+------------+------------+-----------+----------+
         | 5    |               Reserved                         |
         +------+------------+------------+-----------+----------+
         | 6-n  |    Service Parameters and Sequence Statuses    |
         |      |    as described in [FC-FS]                     |
         +======+============+============+===========+==========+
         |n+1-  | Port Name of the Exchange Originator (8 bytes) |
         |n+2   |                                                |
         +======+============+============+===========+==========+
         |n+3-  | Port Name of the Exchange Responder (8 bytes)  |
         |n+4   |                                                |
         +======+============+============+===========+==========+

         Fields Requiring       Translation     Supplemental Data
         Address Translation     Type (see        (type 3 only)
         -------------------    Section 7.2)    ------------------
                                -----------

         Exchange Originator    1, 2, or 3      Port Name of the
         N_PORT ID                              Exchange Originator

         Exchange Responder     1, 2, or 3      Port Name of the
         N_PORT ID                              Exchange Responder

   When supplemental data is required, the ELS SHALL be extended by 4
   words as shown above.  If the translation type for the Exchange
   Originator N_PORT ID or the Exchange Responder N_PORT ID is 1 or 2,
   the corresponding 8-byte port name SHALL be set to all zeros.

         Other Special Processing:

            None.

7.3.1.12.  Read Link Error Status (RLS)

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x0F |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Rsvd       |     N_PORT Identifier             |
         +======+============+============+===========+==========+
         | 2-3  |           Port Name of the N_PORT (8 bytes)    |
         +======+============+============+===========+==========+

         Fields Requiring       Translation     Supplemental Data
         Address Translation     Type (see       (type 3 only)
         -------------------    Section 7.2)    -----------------
                                -----------

         N_PORT Identifier      1, 2, or 3      Port Name of the
                                                N_PORT

         Other Special Processing:

            None.

7.3.1.13.  Read Sequence Status Block (RSS)

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x09 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | SEQ_ID     |     Exchange Originator S_ID      |
         +------+------------+------------+-----------+----------+
         | 2    |          OX_ID          |         RX_ID        |
         +======+============+============+===========+==========+
         | 3-4  |Port Name of the Exchange Originator (8 bytes)  |
         +======+============+============+===========+==========+

         Fields Requiring       Translation    Supplemental Data
         Address Translation     Type (see        (type 3 only)
         -------------------    Section 7.2)   ------------------
                                -----------

         Exchange Originator    1, 2, or 3     Port Name of the
         S_ID                                  Exchange Originator

         Other Special Processing:

            None.

7.3.1.14.  Reinstate Recovery Qualifier (RRQ)

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x12 |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Rsvd       |     Exchange Originator S_ID      |
         +------+------------+------------+-----------+----------+
         | 2    |          OX_ID          |         RX_ID        |
         +------+------------+------------+-----------+----------+
         | 3-10 |  Association Header (may be optionally req**d)  |
         +======+============+============+===========+==========+

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)  ------------------
                                -----------

         Exchange Originator      1 or 2             N/A
         S_ID

         Other Special Processing:

             None.

7.3.1.15.  Request Sequence Initiative (RSI)

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x0A |   0x00     |    0x00   |   0x00   |
         +------+------------+------------+-----------+----------+
         | 1    | Rsvd       |     Exchange Originator S_ID      |
         +------+------------+------------+-----------+----------+
         | 2    |          OX_ID          |         RX_ID        |
         +------+------------+------------+-----------+----------+
         | 3-10 |  Association Header (may be optionally req**d)  |
         +======+============+============+===========+==========+

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)   ------------------
                                -----------

         Exchange Originator      1 or 2             N/A
         S_ID

         Other Special Processing:

            None.

7.3.1.16.  Scan Remote Loop (SRL)

   SRL allows a remote loop to be scanned to detect changes in the
   device configuration.  Any changes will trigger a fibre channel state
   change notification and subsequent update of the iSNS database.

      ELS Format:

         +------+------------+------------+-----------+----------+
         | Word | Bits 0-7   | Bits 8-15  | Bits 16-24|Bits 25-31|
         +------+------------+------------+-----------+----------+
         | 0    | Cmd = 0x7B |           Reserved                |
         +------+------------+------------+-----------+----------+
         | 1    | Flag       | Address Identifier of the FL_PORT |
         |      |            | (see B.1)                         |
         +======+============+============+===========+==========+
         | 2-3  | Worldwide Name of the Remote FL_PORT           |
         +======+============+============+===========+==========+

         Fields Requiring       Translation   Supplemental Data
         Address Translation     Type (see      (type 3 only)
         -------------------    Section 7.2)  ------------------
                                -----------

         Address Identifier         3         Worldwide Name of
         of the FL_PORT                       the Remote FL_PORT

   Other Special Processing:

      The D_ID field is the address of the Domain Controller associated
      with the remote loop.  The format of the Domain Controller address
      is the hex 'FF FC' || Domain_ID, where Domain_ID is the gateway-
      assigned alias representing the remote gateway or switch element
      being queried.  After translation by the remote gateway, the D_ID
      identifies the gateway or switch element to be scanned within the
      remote gateway region.

      The FLAG field defines the scope of the SRL.  If set to 0, all
      loop port interfaces on the given switch element or gateway are
      scanned.  If set to one, the loop port interface on the gateway or
      switch element to be scanned MUST be specified in bits 8 through
      31.

      If the Flag field is zero, the SRL request SHALL NOT be sent as a
      special ELS.

      If the Domain_ID represents a remote switch or gateway and an iFCP
      session to the remote Domain Controller does not exist, the
      requesting gateway SHALL create the iFCP session.

7.3.1.17.  Third Party Process Logout (TPRLO)

   TPRLO provides a mechanism for an N_PORT (third party) to remove one
   or more process login sessions that exist between the destination
   N_PORT and other N_PORTs specified in the command.  This command
   includes one or more TPRLO LOGOUT PARAMETER PAGEs, each of which,
   when combined with the destination N_PORT, identifies a process login
   to be terminated by the command.

   +--------+------------+--------------------+----------------------+
   | Word   | Bits 0-7   |     Bits 8-15      |     Bits 16 - 31     |
   +--------+------------+--------------------+----------------------+
   | 0      | Cmd = 0x24 | Page Length (0x10) |    Payload Length    |
   +--------+------------+--------------------+----------------------+
   | 1      |          TPRLO Logout Parameter Page 0                 |
   +--------+--------------------------------------------------------+
   | 5      |          TPRLO Logout Parameter Page 1                 |
   +--------+--------------------------------------------------------+
                            ....
   +--------+--------------------------------------------------------+
   |(4*n)+1 |          TPRLO Logout Parameter Page n                 |
   +--------+--------------------------------------------------------+

                     Figure 22. Format of TPRLO ELS

   Each TPRLO parameter page contains parameters identifying one or more
   image pairs and may be associated with a single FC-4 protocol type
   that is common to all FC-4 protocol types between the specified image
   pair or global to all specified image pairs.  The format of a TPRLO
   page requiring address translation is shown in Figure 23.  Additional
   information on TPRLO can be found in [FC-FS].

      +------+------------+------------+-----------+----------+
      | Word | Bits 0-7   | Bits 8-15  |       Bits 16-31     |
      +------+------------+------------+-----------+----------+
      | 0    | TYPE Code  | TYPE CODE  |                      |
      |      | or         | EXTENSION  |      TPRLO Flags     |
      |      | Common SVC |            |                      |
      |      | Parameters |            |                      |
      +------+------------+------------+-----------+----------+
      | 1    |         Third Party Process Associator         |
      +------+------------+------------+-----------+----------+
      | 2    |         Responder Process Associator           |
      +------+------------+------------+-----------+----------+
      | 3    | Reserved   | Third Party Originator N_PORT ID  |
      +======+============+============+===========+==========+
      | 4-5  | Worldwide Name of Third Party Originator       |
      |      | N_PORT                                         |
      +------+------------------------------------------------+

        Figure 23. Format of an Augmented TPRLO Parameter Page

   The TPRLO flags that affect supplemented ELS processing are as
   follows:

   Bit 18:   Third party Originator N_PORT Validity.  When set to one,
             this bit indicates that word 3, bits 8-31 (Third Party
             Originator N_PORT ID), are meaningful.

   Bit 19:   Global Process logout.  When set to one, this bit indicates
             that all image pairs for all N_PORTs of the specified FC-4
             protocol shall be invalidated.  When the value of this bit
             is one, only one logout parameter page is permitted in the
             TPRLO payload.

   If bit 18 has a value of zero and bit 19 has a value of one in the
   TPRLO flags field, then the ELS SHALL NOT be sent as a special ELS.

   Otherwise, the originating gateway SHALL process the ELS as follows:

   a) The first word of the TPRLO payload SHALL NOT be modified.

   b) Each TPRLO parameter page shall be extended by two words as shown
      in Figure 23.

   c) If word 0, bit 18 (Third Party Originator N_PORT ID validity), in
      the TPRLO flags field has a value of one, then the sender shall
      place the worldwide port name of the fibre channel device's N_PORT
      in the extension words.  The N_PORT ID SHALL be set to 3.
      Otherwise, the contents of the extension words and the Third Party
      Originator N_PORT ID SHALL be set to zero.

   d) The ELS originator SHALL set the SPC bit in the encapsulation
      header of each augmented frame comprising the ELS (see Section
      5.3.1).

   e) If the ELS contains a single TPRLO parameter page, the originator
      SHALL increase the frame length as necessary to include the
      extended parameter page.

   f) If the ELS to be augmented contains multiple TPRLO parameter
      pages, the FC frames created to contain the augmented ELS payload
      SHALL NOT exceed the maximum frame size that can be accepted by
      the destination N_PORT.

      Each fibre channel frame SHALL contain an integer number of
      extended TPRLO parameter pages.  The maximum number of extended
      TPRLO parameter pages in a frame SHALL be limited to the number
      that can be held without exceeding the above upper limit.  New
      frames resulting from the extension of the TPRLO pages to include
      the supplemental data SHALL be created by extending the SEQ_CNT in
      the fibre channel frame header.  The SEQ_ID SHALL NOT be modified.

   The gateway receiving the augmented TPRLO ELS SHALL generate ELS
   frames to be sent to the destination N_PORT by copying word 0 of the
   ELS payload and processing each augmented parameter page as follows:

   a) If word 0, bit 18, has a value of one, create a parameter page by
      copying words 0 through 2 of the augmented parameter page.  The
      Third Party Originator N_PORT ID in word 3 shall be generated by
      referencing the supplemental data as described in Section 7.2.

   b) If word 0, bit 18, has a value of zero, create a parameter page by
      copying words 0 through 3 of the augmented parameter page.

   The size of each frame to be sent to the destination N_PORT MUST NOT
   exceed the maximum frame size that the destination N_PORT can accept.
   The sequence identifier in each frame header SHALL be copied from the
   augmented ELS, and the sequence count SHALL be monotonically
   increasing.

7.3.1.18.  Third Party Logout Accept (TPRLO ACC)

   The format of the TPRLO ACC frame is shown in Figure 24.

   +--------+------------+--------------------+----------------------+
   | Word   |  Bits 0-7  |     Bits 8-15      |     Bits 16 - 31     |
   +--------+------------+--------------------+----------------------+
   | 0      | Cmd = 0x2  | Page Length (0x10) |    Payload Length    |
   +--------+------------+--------------------+----------------------+
   | 1      |          TPRLO Logout Parameter Page 0                 |
   +--------+--------------------------------------------------------+
   | 5      |          TPRLO Logout Parameter Page 1                 |
   +--------+--------------------------------------------------------+
                            ....
   +--------+--------------------------------------------------------+
   |(4*n)+1 |          TPRLO Logout Parameter Page n                 |
   +--------+--------------------------------------------------------+

                  Figure 24. Format of TPRLO ACC ELS

   The format of the parameter page and rules for parameter page
   augmentation are as specified in Section 7.3.1.17.

7.3.2.  Special FC-4 Link Services

   The following sections define FC-4 link services for which special
   processing is required.

7.3.2.1.  FC-4 Link Services Defined by FCP

   The format of FC-4 link service frames defined by FCP can be found in
   [FCP-2].

7.3.2.1.1.  FCP Read Exchange Concise (FCP REC)

   The payload format for this link service is identical to the REC
   extended link service specified in Section 7.3.1.8 and SHALL be
   processed as described in that section.  The FC-4 version will become
   obsolete in [FCP-2].  However, in order to support devices
   implemented against early revisions of FCP-2, an iFCP gateway MUST
   support both versions.

7.3.2.1.2.  FCP Read Exchange Concise Accept (FCP REC ACC)

   The payload format for this link service is identical to the REC ACC
   extended link service specified in Section 7.3.1.9 and SHALL be
   processed as described in that section.  The FC-4 version will become
   obsolete in [FCP-2].  However, in order to support devices
   implemented against earlier revisions of FCP-2, an iFCP gateway MUST
   support both versions.

7.4.  FLOGI Service Parameters Supported by an iFCP Gateway

   The FLOGI ELS is issued by an N_PORT that wishes to access the fabric
   transport services.

   The format of the FLOGI request and FLOGI ACC payloads are identical
   to the PLOGI request and ACC payloads described in Section 7.3.1.7.

      +------+------------+------------+-----------+----------+
      | Word | Bits 0-7   | Bits 8-15  |Bits 16-24 |Bits 25-31|
      +------+------------+------------+-----------+----------+
      | 0    | Cmd = 0x4  |   0x00     |    0x00   |   0x00   |
      |      | Acc = 0x2  |            |           |          |
      +------+------------+------------+-----------+----------+
      | 1-4  |            Common Service Parameters           |
      +------+------------+------------+-----------+----------+
      | 5-6  |            N_PORT Name                         |
      +------+------------+------------+-----------+----------+
      | 7-8  |            Node Name                           |
      +------+------------+------------+-----------+----------+
      | 9-12 |            Class 1 Service Parameters          |
      +------+------------+------------+-----------+----------+
      |13-17 |            Class 2 Service Parameters          |
      +------+------------+------------+-----------+----------+
      |18-21 |            Class 3 Service Parameters          |
      +------+------------+------------+-----------+----------+
      |22-25 |            Class 4 Service Parameters          |
      +------+------------+------------+-----------+----------+
      |26-29 |            Vendor Version Level                |
      +======+============+============+===========+==========+

           Figure 25. FLOGI Request and ACC Payload Format

   A full description of each parameter is given in [FC-FS].

   This section tabulates the protocol-dependent service parameters
   supported by a fabric port attached to an iFCP gateway.

   The service parameters carried in the payload of an FLOGI extended
   link service request MUST be set in accordance with Table 9.

      +-----------------------------------------+---------------+
      |                                         | Fabric Login  |
      |          Service Parameter              |    Class      |
      |                                         +---+---+---+---+
      |                                         | 1 | 2 | 3 | 4 |
      +-----------------------------------------+---+---+---+---+
      | Class Validity                          | n | M | M | n |
      +-----------------------------------------+---+---+---+---+
      | Service Options                         |               |
      +-----------------------------------------+---+---+---+---+
      |   Intermix Mode                         | n | n | n | n |
      +-----------------------------------------+---+---+---+---+
      |   Stacked Connect-Requests              | n | n | n | n |
      +-----------------------------------------+---+---+---+---+
      |   Sequential Delivery                   | n | M | M | n |
      +-----------------------------------------+---+---+---+---+
      |   Dedicated Simplex                     | n | n | n | n |
      +-----------------------------------------+---+---+---+---+
      |   Camp On                               | n | n | n | n |
      +-----------------------------------------+---+---+---+---+
      |   Buffered Class 1                      | n | n | n | n |
      +-----------------------------------------+---+---+---+---+
      |   Priority                              | n | n | n | n |
      +-----------------------------------------+---+---+---+---+
      | Initiator/Recipient Control             |               |
      +-----------------------------------------+---+---+---+---+
      |   Clock Synchronization ELS Capable     | n | n | n | n |
      +-----------------------------------------+---+---+---+---+

              Table 9. FLOGI Service Parameter Settings

   Notes:

      1) "n" indicates a parameter or capability that is not supported
         by the iFCP protocol.

      2) "M" indicates an applicable parameter that MUST be supported by
         an iFCP gateway.

8.  iFCP Error Detection

8.1.  Overview

   This section specifies provisions for error detection and recovery in
   addition to those in [FC-FS], which continue to be available in the
   iFCP network environment.

8.2.  Stale Frame Prevention

   Recovery from fibre channel protocol error conditions requires that
   frames associated with a failed or aborted exchange drain from the
   fabric before exchange resources can be safely reused.

   Since a fibre channel fabric may not preserve frame order, there is
   no deterministic way to purge such frames.  Instead, the fabric
   guarantees that frame the lifetime will not exceed a specific limit
   (R_A_TOV).

   R_A_TOV is defined in [FC-FS] as "the maximum transit time within a
   fabric to guarantee that a lost frame will never emerge from the
   fabric".  For example, a value of 2 x R_A_TOV is the minimum time
   that the originator of an ELS request or FC-4 link service request
   must wait for the response to that request.  The fibre channel
   default value for R_A_TOV is 10 seconds.

   An iFCP gateway SHALL actively enforce limits on R_A_TOV as described
   in Section 8.2.1.

8.2.1.  Enforcing R_A_TOV Limits

   The R_A_TOV limit on frame lifetimes SHALL be enforced by means of
   the time stamp in the encapsulation header (see Section 5.3.1) as
   described in this section.

   The budget for R_A_TOV SHOULD include allowances for the propagation
   delay through the gateway regions of the sending and receiving
   N_PORTs, plus the propagation delay through the IP network.  This
   latter component is referred to in this specification as IP_TOV.

   IP_TOV should be set well below the value of R_A_TOV specified for
   the iFCP fabric and should be stored in the iSNS server.  IP_TOV
   should be set to 50 percent of R_A_TOV.

   The following paragraphs describe the requirements for synchronizing
   gateway time bases and the rules for measuring and enforcing
   propagation delay limits.

   The protocol for synchronizing a gateway time base is SNTP [RFC2030].
   In order to ensure that all gateways are time aligned, a gateway
   SHOULD obtain the address of an SNTP-compatible time server via an
   iSNS query.  If multiple time server addresses are returned by the
   query, the servers must be synchronized and the gateway may use any
   server in the list.  Alternatively, the server may return a multicast
   group address in support of operation in Anycast mode.
   Implementation of Anycast mode is as specified in [RFC2030],
   including the precautions defined in that document.  Multicast mode
   SHOULD NOT be used.

   An SNTP server may use any one of the time reference sources listed
   in [RFC2030].  The resolution of the time reference MUST be 125
   milliseconds or better.

   Stability of the SNTP server and gateway time bases should be 100 ppm
   or better.

   With regard to its time base, the gateway is in either the
   Synchronized or Unsynchronized state.

   When in the synchronized state, the gateway SHALL

   a) set the time stamp field for each outgoing frame in accordance
      with the gateway's internal time base;

   b) check the time stamp field of each incoming frame, following
      validation of the encapsulation header CRC, as described in
      Section 5.3.4;

   c) if the incoming frame has a time stamp of 0,0 and is not one of
      the session control frames that require a 0,0 time stamp (see
      Section 6), the frame SHALL be discarded;

   d) if the incoming frame has a non-zero time stamp, the receiving
      gateway SHALL compute the absolute value of the time in flight and
      SHALL compare it against the value of IP_TOV specified for the IP
      fabric;

   e) if the result in step (d) exceeds IP_TOV, the encapsulated frame
      shall be discarded.  Otherwise, the frame shall be de-encapsulated
      as described in Section 5.3.4.

   A gateway SHALL enter the Synchronized state upon receiving a
   successful response to an SNTP query.

   A gateway shall enter the Unsynchronized state:

   a) upon power-up and before successful completion of an SNTP query,
      and

   b) whenever the gateway looses contact with the SNTP server, such
      that the gateway's time base may no longer be in alignment with
      that of the SNTP server.  The criterion for determining loss of
      contact is implementation specific.

   Following loss of contact, it is recommended that the gateway enter
   the Unsynchronized state when the estimated time base drift relative
   to the SNTP reference is greater than ten percent of the IP_TOV
   limit.  (Assuming that all timers have an accuracy of 100 ppm and
   IP_TOV equals 5 seconds, the maximum allowable loss of contact
   duration would be about 42 minutes.)

   As the result of a transition from the Synchronized to the
   Unsynchronized state, a gateway MUST abort all iFCP sessions as
   described in Section 5.2.3.  While in the Unsynchronized state, a
   gateway SHALL NOT permit the creation of new iFCP sessions.

9.  Fabric Services Supported by an iFCP Implementation

   An iFCP gateway implementation MUST support the following fabric
   services:

       N_PORT ID Value           Description             Section
       ---------------           -----------             -------
       0xFF-FF-FE             F_PORT Server              9.1

       0xFF-FF-FD             Fabric Controller          9.2

       0xFF-FF-FC             Directory/Name Server      9.3

   In addition, an iFCP gateway MAY support the FC broadcast server
   functionality described in Section 9.4.

9.1.  F_PORT Server

   The F_PORT server SHALL support the FLOGI ELS, as described in
   Section 7.4, as well as the following ELSs specified in [FC-FS]:

   a) Request for fabric service parameters (FDISC).

   b) Request for the link error status (RLS).

   c) Read Fabric Timeout Values (RTV).

9.2.  Fabric Controller

   The Fabric Controller SHALL support the following ELSs as specified
   in [FC-FS]:

   a) State Change Notification (SCN).

   b) Registered State Change Notification (RSCN).

   c) State Change Registration (SCR).

9.3.  Directory/Name Server

   The Directory/Name server provides a registration service allowing an
   N_PORT to record or query the database for information about other
   N_PORTs.  The services are defined in [FC-GS3].  The queries are
   issued as FC-4 transactions using the FC-CT command transport
   protocol specified in [FC-GS3].

   In iFCP, each name server request MUST be translated to the
   appropriate iSNS query defined in [ISNS].  The definitions of name
   server objects are specified in [FC-GS3].

   The name server SHALL support record and query operations for
   directory subtype 0x02 (Name Server) and 0x03 (IP Address Server) and
   MAY support the FC-4 specific services as defined in [FC-GS3].

9.4.  Broadcast Server

   Fibre channel frames are broadcast throughout the fabric by
   addressing them to the fibre channel broadcast server at the well-
   known fibre channel address 0xFF-FF-FF.  The broadcast server then
   replicates and delivers the frame to each attached N_PORT in all
   zones to which the originating device belongs.  Only class 3
   (datagram) service is supported.

   In an iFCP system, the fibre channel broadcast function is emulated
   by means of a two-tier architecture comprising the following
   elements:

   a) A local broadcast server residing in each iFCP gateway.  The local
      server distributes broadcast traffic within the gateway region and
      forwards outgoing broadcast traffic to a global server for
      distribution throughout the iFCP fabric.

   b) A global broadcast server that re-distributes broadcast traffic to
      the local server in each participating gateway.

   c) An iSNS discovery domain defining the scope over which broadcast
      traffic is propagated.  The discovery domain is populated with a
      global broadcast server and the set of local servers it supports.

   The local and global broadcast servers are logical iFCP devices that
   communicate using the iFCP protocol.  The servers have an N_PORT
   Network Address consisting of an iFCP portal address and an N_PORT ID
   set to the well-known fibre channel address of the FC broadcast
   server (0xFF-FF-FF).

   As noted above, an N_PORT originates a broadcast by directing frame
   traffic to the fibre channel broadcast server.  The gateway-resident
   local server distributes a copy of the frame locally and forwards a
   copy to the global server for redistribution to the local servers on
   other gateways.  The global server MUST NOT echo a broadcast frame to
   the originating local server.

9.4.1.  Establishing the Broadcast Configuration

   The broadcast configuration is managed with facilities provided by
   the iSNS server by the following means:

   a) An iSNS discovery domain is created and seeded with the network
      address of the global broadcast server N_PORT.  The global server
      is identified as such by setting the appropriate N_PORT entity
      attribute.

   b) Using the management interface, each broadcast server is preset
      with the identity of the broadcast domain.

   During power up, each gateway SHALL invoke the iSNS service to
   register its local broadcast server in the broadcast discovery
   domain.  After registration, the local server SHALL wait for the
   global broadcast server to establish an iFCP session.

   The global server SHALL register with the iSNS server as follows:

   a) The server SHALL query the iSNS name server by attribute to obtain
      the worldwide port name of the N_PORT pre-configured to provide
      global broadcast services.

   b) If the worldwide port name obtained above does not correspond to
      that of the server issuing the query, the N_PORT SHALL NOT perform
      global broadcast functions for N_PORTs in that discovery domain.

   c) Otherwise, the global server N_PORT SHALL register with the
      discovery domain and query the iSNS server to identify all
      currently registered local servers.

   d) The global broadcast server SHALL initiate an iFCP session with
      each local broadcast server in the domain.  When a new local
      server registers, the global server SHALL receive a state change
      notification and respond by initiating an iFCP session with the
      newly added server.  The gateway SHALL obtain these notifications
      using the iSNS provisions for lossless delivery.

   Upon receiving the CBIND request to initiate the iFCP session, the
   local server SHALL record the worldwide port name and N_PORT network
   address of the global server.

9.4.2.  Broadcast Session Management

   After the initial broadcast session is established, the local or
   global broadcast server MAY choose to manage the session in one of
   the following ways, depending on resource requirements and the
   anticipated level of broadcast traffic:

   a) A server MAY keep the session open continuously.  Since broadcast
      sessions are often quiescent for long periods of time, the server
      SHOULD monitor session connectivity as described in Section
      5.2.2.4.

   b) A server MAY open the broadcast session on demand only when
      broadcast traffic is to be sent.  If the session is reopened by
      the global server, the local server SHALL replace the previously
      recorded network address of the global broadcast server.

9.4.3.  Standby Global Broadcast Server

   An implementation may designate a local server to assume the duties
   of the global broadcast server in the event of a failure.  The local
   server may use the LTEST message to determine whether the global
   server is functioning and may assume control if it is not.

   When assuming control, the standby server must register with the iSNS
   server as the global broadcast server in place of the failed server
   and must install itself in the broadcast discovery domain as
   specified in steps c) and d) of Section 9.4.1.

10.  iFCP Security

10.1.  Overview

   iFCP relies upon the IPSec protocol suite to provide data
   confidentiality and authentication services, and it relies upon IKE
   as the key management protocol.  Section 10.2 describes the security
   requirements arising from iFCP's operating environment, and Section

   10.3 describes the resulting design choices, their requirement
   levels, and how they apply to the iFCP protocol.

   Detailed considerations for use of IPsec and IKE with the iFCP
   protocol can be found in [SECIPS].

10.2.  iFCP Security Threats and Scope

10.2.1.  Context

   iFCP is a protocol designed for use by gateway devices deployed in
   enterprise data centers.  Such environments typically have security
   gateways designed to provide network security through isolation from
   public networks.  Furthermore, iFCP data may have to traverse
   security gateways in order to support SAN-to-SAN connectivity across
   public networks.

10.2.2.  Security Threats

   Communicating iFCP gateways may be subjected to attacks, including
   attempts by an adversary to:

   a) acquire confidential data and identities by snooping data packets,

   b) modify packets containing iFCP data and control messages,

   c) inject new packets into the iFCP session,

   d) hijack the TCP connection carrying the iFCP session,

   e) launch denial-of-service attacks against the iFCP gateway,

   f) disrupt the security negotiation process,

   g) impersonate a legitimate security gateway, or

   h) compromise communication with the iSNS server.

   It is imperative to thwart these attacks, given that an iFCP gateway
   is the last line of defense for a whole fibre channel island, which
   may include several hosts and fibre channel switches.  To do so, the
   iFCP gateway must implement and may use confidentiality, data origin
   authentication, integrity, and replay protection on a per-datagram
   basis.  The iFCP gateway must implement and may use bi-directional
   authentication of the communication endpoints.  Finally, it must
   implement and may use a scalable approach to key management.

10.2.3.  Interoperability with Security Gateways

   Enterprise data center networks are considered mission-critical
   facilities that must be isolated and protected from all possible
   security threats.  Such networks are usually protected by security
   gateways, which, at a minimum, provide a shield against denial-of-
   service attacks.  The iFCP security architecture is capable of
   leveraging the protective services of the existing security
   infrastructure, including firewall protection, NAT and NAPT services,
   and IPSec VPN services available on existing security gateways.
   Considerations regarding intervening NAT and NAPT boxes along the
   iFCP-iSNS path can be found in [ISNS].

10.2.4.  Authentication

   iFCP is a peer-to-peer protocol.  iFCP sessions may be initiated by
   either peer gateway or both.  Consequently, bi-directional
   authentication of peer gateways must be provided in accordance with
   the requirement levels specified in Section 10.3.1.

   N_PORT identities used in the Port Login (PLOGI) process shall be
   considered authenticated if the PLOGI request is received from the
   remote gateway over a secure, IPSec-protected connection.

   There is no requirement that the identities used in authentication be
   kept confidential.

10.2.5.  Confidentiality

   iFCP traffic may traverse insecure public networks, and therefore
   implementations must have per-packet encryption capabilities to
   provide confidentiality in accordance with the requirements specified
   in Section 10.3.1.

10.2.6.  Rekeying

   Due to the high data transfer rates and the amount of data involved,
   an iFCP implementation must support the capability to rekey each
   phase 2 security association in the time intervals dictated by
   sequence number space exhaustion at a given link rate.  In the
   rekeying scenario described in [SECIPS], for example, rekeying events
   happen as often as every 27.5 seconds at a 10 Gbps rate.

   The iFCP gateway must provide the capability for forward secrecy in
   the rekeying process.

10.2.7.  Authorization

   Basic access control properties stem from the requirement that two
   communicating iFCP gateways be known to one or more iSNS servers
   before they can engage in iFCP exchanges.  The optional use of
   discovery domains [ISNS], Identity Payloads (e.g., ID_FQDNs), and
   certificate-based authentication (e.g., with X509v3 certificates)
   enables authorization schemas of increasing complexity.  The
   definition of such schemas (e.g., role-based access control) is
   outside of the scope of this specification.

10.2.8.  Policy Control

   This specification allows any and all security mechanisms in an iFCP
   gateway to be administratively disabled.  Security policies MUST
   have, at most, iFCP Portal resolution.  Administrators may gain
   control over security policies through an adequately secured
   interaction with a management interface or with iSNS.

10.2.9.  iSNS Role

   iSNS [ISNS] is an invariant in all iFCP deployments.  iFCP gateways
   MUST use iSNS for discovery services and MAY use security policies
   configured in the iSNS database as the basis for algorithm
   negotiation in IKE.  The iSNS specification defines mechanisms for
   securing communication between an iFCP gateway and iSNS server(s).
   Additionally, the specification indicates how elements of security
   policy concerning individual iFCP sessions can be retrieved from iSNS
   server(s).

10.3.  iFCP Security Design

10.3.1.  Enabling Technologies

   Applicable technology from IPsec and IKE is defined in the following
   suite of specifications:

      [RFC2401] Security Architecture for the Internet Protocol

      [RFC2402] IP Authentication Header

      [RFC2404] The Use of HMAC-SHA-1-96 within ESP and AH

      [RFC2405] The ESP DES-CBC Cipher Algorithm with Explicit IV

      [RFC2406] IP Encapsulating Security Payload

      [RFC2407] The Internet IP Security Domain of Interpretation for
      ISAKMP

      [RFC2408] Internet Security Association and Key Management
      Protocol (ISAKMP)

      [RFC2409] The Internet Key Exchange (IKE)

      [RFC2410] The NULL Encryption Algorithm and Its Use With IPSEC

      [RFC2451] The ESP CBC-Mode Cipher Algorithms

      [RFC2709] Security Model with Tunnel-mode IPsec for NAT Domains

   The implementation of IPsec and IKE is required according to the
   following guidelines.

   Support for the IP Encapsulating Security Payload (ESP) [RFC2406] is
   MANDATORY to implement.  When ESP is used, per-packet data origin
   authentication, integrity, and replay protection MUST be used.

   For data origin authentication and integrity with ESP, HMAC with SHA1
   [RFC2404] MUST be implemented, and the Advanced Encryption Standard
   [AES] in CBC MAC mode with Extended Cipher Block Chaining SHOULD be
   implemented in accordance with [AESCBC].

   For confidentiality with ESP, 3DES in CBC mode [RFC2451] MUST be
   implemented, and AES counter mode encryption [AESCTR] SHOULD be
   implemented.  NULL encryption MUST be supported as well, as defined
   in [RFC2410].  DES in CBC mode SHOULD NOT be used due to its inherent
   weakness.  Since it is known to be crackable with modest computation
   resources, it is inappropriate for use in any iFCP deployment
   scenario.

   A conforming iFCP protocol implementation MUST implement IPsec ESP
   [RFC2406] in tunnel mode [RFC2401] and MAY implement IPsec ESP in
   transport mode.

   Regarding key management, iFCP implementations MUST support IKE
   [RFC2409] for bi-directional peer authentication, negotiation of
   security associations, and key management, using the IPsec DOI.
   There is no requirement that the identities used in authentication be
   kept confidential.  Manual keying MUST NOT be used since it does not
   provide the necessary keying support.  According to [RFC2409], pre-
   shared secret key authentication is MANDATORY to implement, whereas
   certificate-based peer authentication using digital signatures MAY be
   implemented (see Section 10.3.3 regarding the use of certificates).
   [RFC2409] defines the following requirement levels for IKE Modes:

      Phase-1 Main Mode MUST be implemented.

      Phase-1 Aggressive Mode SHOULD be implemented.

      Phase-2 Quick Mode MUST be implemented.

      Phase-2 Quick Mode with key exchange payload MUST be implemented.

   With iFCP, Phase-1 Main Mode SHOULD NOT be used in conjunction with
   pre-shared keys, due to Main Mode's vulnerability to man-in-the-
   middle-attackers when group pre-shared keys are used.  In this
   scenario, Aggressive Mode SHOULD be used instead.  Peer
   authentication using the public key encryption methods outlined in
   [RFC2409] SHOULD NOT be used.

   The DOI [RFC2407] provides for several types of Identification
   Payloads.

   When used for iFCP, IKE Phase 1 exchanges MUST explicitly carry the
   Identification Payload fields (IDii and IDir).  Conforming iFCP
   implementations MUST use ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol
   stack supports IPv6), or ID_FQDN Identification Type values.  The
   ID_USER_FQDN, IP Subnet, IP Address Range, ID_DER_ASN1_DN,
   ID_DER_ASN1_GN Identification Type values SHOULD NOT be used.  The
   ID_KEY_ID Identification Type values MUST NOT be used.  As described
   in [RFC2407], the port and protocol fields in the Identification
   Payload MUST be set to zero or UDP port 500.

   When used for iFCP, IKE Phase 2 exchanges MUST explicitly carry the
   Identification Payload fields (IDci and IDcr).  Conforming iFCP
   implementations MUST use either ID_IPV4_ADDR or ID_IPV6_ADDR
   Identification Type values (according to the version of IP
   supported).  Other Identification Type values MUST NOT be used.  As
   described in Section 5.2.2, the gateway creating the iFCP session
   must query the iSNS server to determine the appropriate port on which
   to initiate the associated TCP connection.  Upon a successful IKE
   Phase 2 exchange, the IKE responder enforces the negotiated selectors
   on the IPsec SAs.  Any subsequent iFCP session creation requires the
   iFCP peer to query its iSNS server for access control (in accordance
   with the session creation requirements specified in Section 5.2.2.1).

10.3.2.  Use of IKE and IPsec

   A conforming iFCP Portal is capable of establishing one or more IKE
   Phase-1 Security Associations (SAs) to a peer iFCP Portal.  A Phase-1
   SA may be established when an iFCP Portal is initialized or may be
   deferred until the first TCP connection with security requirements is
   established.

   An IKE Phase-2 SA protects one or more TCP connections within the
   same iFCP Portal.  More specifically, the successful establishment of
   an IKE Phase-2 SA results in the creation of two uni-directional
   IPsec SAs fully qualified by the tuple <SPI, destination IP address,
   ESP>.

   These SAs protect the setup process of the underlying TCP connections
   and all their subsequent TCP traffic.  The number of TCP connections
   in an IPsec SA, as well as the number of SAs, is practically driven
   by security policy considerations (i.e., security services are
   defined at the granularity of an IPsec SA only), QoS considerations
   (e.g., multiple QoS classes within the same IPsec SA increase odds of
   packet reordering, possibly falling outside the replay window), and
   failure compartmentalization considerations.  Each of the TCP
   connections protected by an IPsec SA is either in the unbound state,
   or bound to a specific iFCP session.

   In summary, at any point in time:

      -- there exist 0..M IKE Phase-1 SAs between peer iFCP portals,

      -- each IKE Phase-1 SA has 0..N IKE Phase-2 SAs, and

      -- each IKE Phase-2 SA protects 0..Z TCP connections.

   The creation of an IKE Phase-2 SA may be triggered by a policy rule
   supplied through a management interface or by iFCP Portal properties
   registered with the iSNS server.  Similarly, the use of a Key
   Exchange payload in Quick Mode for perfect forward secrecy may be
   dictated through a management interface or by an iFCP Portal policy
   rule registered with the iSNS server.

   If an iFCP implementation makes use of unbound TCP connections, and
   such connections belong to an iFCP Portal with security requirements,
   then the unbound connections MUST be protected by an SA at all times
   just like bound connections.

   Upon receipt of an IKE Phase-2 delete message, there is no
   requirement to terminate the protected TCP connections or delete the
   associated IKE Phase-1 SA.  Since an IKE Phase-2 SA may be associated
   with multiple TCP connections, terminating these connections might in
   fact be inappropriate and untimely.

   To minimize the number of active Phase-2 SAs, IKE Phase-2 delete
   messages may be sent for Phase-2 SAs whose TCP connections have not
   handled data traffic for a while.  To minimize the use of SA

   resources while the associated TCP connections are idle, creation of
   a new SA should be deferred until new data are to be sent over the
   connections.

10.3.3.  Signatures and Certificate-Based Authentication

   Conforming iFCP implementations MAY support peer authentication via
   digital signatures and certificates.  When certificate authentication
   is chosen within IKE, each iFCP gateway needs the certificate
   credentials of each peer iFCP gateway in order to establish a
   security association with that peer.

   Certificate credentials used by iFCP gateways MUST be those of the
   machine.  Certificate credentials MAY be bound to the interface (IP
   Address or FQDN) of the iFCP gateway used for the iFCP session, or to
   the fabric WWN of the iFCP gateway itself.  Since the value of a
   machine certificate is inversely proportional to the ease with which
   an attacker can obtain one under false pretenses, it is advisable
   that the machine certificate enrollment process be strictly
   controlled.  For example, only administrators may have the ability to
   enroll a machine with a machine certificate.  User certificates
   SHOULD NOT be used by iFCP gateways for establishment of SAs
   protecting iFCP sessions.

   If the gateway does not have the peer iFCP gateway's certificate
   credentials, then it can obtain them:

   a) by using the iSNS protocol to query for the peer gateway's
      certificate(s) stored in a trusted iSNS server, or

   b) through use of the ISAKMP Certificate Request Payload (CRP)
      [RFC2408] to request the certificate(s) directly from the peer
      iFCP gateway.

   When certificate chains are long enough, IKE exchanges using UDP as
   the underlying transport may yield IP fragments, which are known to
   work poorly across some intervening routers, firewalls, and NA(P)T
   boxes.  As a result, the endpoints may be unable to establish an
   IPsec security association.

   Due to these fragmentation shortcomings, IKE is most appropriate for
   intra-domain usage.  Known solutions to the fragmentation problem
   include sending the end-entry machine certificate rather than the
   chain, reducing the size of the certificate chain, using IKE
   implementations over a reliable transport protocol (e.g., TCP)
   assisted by Path MTU discovery and code against black-holing as per
   [RFC2923], or installing network components that can properly handle
   fragments.

   IKE negotiators SHOULD check the pertinent Certificate Revocation
   List (CRL) [RFC2408] before accepting a certificate for use in IKE's
   authentication procedures.

10.4.  iSNS and iFCP Security

   iFCP implementations MUST use iSNS for discovery and management
   services.  Consequently, the security of the iSNS protocol has an
   impact on the security of iFCP gateways.  For a discussion of
   potential threats to iFCP gateways through use of iSNS, see [ISNS].

   To provide security for iFCP gateways using the iSNS protocol for
   discovery and management services, the IPSec ESP protocol in tunnel
   mode MUST be supported for iFCP gateways.  Further discussion of iSNS
   security implementation requirements is found in [ISNS].  Note that
   iSNS security requirements match those for iFCP described in Section
   10.3.

10.5.  Use of iSNS to Distribute Security Policy

   Once communication between iFCP gateways and the iSNS server has been
   secured through use of IPSec, the iFCP gateways have the capability
   to discover the security settings that they need to use (or not use)
   to protect iFCP traffic.  This provides a potential scaling advantage
   over device-by-device configuration of individual security policies
   for each iFCP gateway.  It also provides an efficient means for each
   iFCP gateway to discover the use or non-use of specific security
   capabilities by peer gateways.

   Further discussion on use of iSNS to distribute security policies is
   found in [ISNS].

10.6.  Minimal Security Policy for an iFCP Gateway

   An iFCP implementation may be able to disable security mechanisms for
   an iFCP Portal administratively through a management interface or
   through security policy elements set in the iSNS server.  As a
   consequence, IKE or IPsec security associations will not be
   established for any iFCP sessions that traverse the portal.

   For most IP networks, it is inappropriate to assume physical
   security, administrative security, and correct configuration of the
   network and all attached nodes (a physically isolated network in a
   test lab may be an exception).  Therefore, authentication SHOULD be
   used in order to provide minimal assurance that connections have
   initially been opened with the intended counterpart.  The minimal
   iFCP security policy only states that an iFCP gateway SHOULD
   authenticate its iSNS server(s) as described in [ISNS].

11.  Quality of Service Considerations

11.1.  Minimal Requirements

   Conforming iFCP protocol implementations SHALL correctly communicate
   gateway-to-gateway, even across one or more intervening best-effort
   IP regions.  The timings with which such gateway-to gateway
   communication is performed, however, will greatly depend upon BER,
   packet losses, latency, and jitter experienced throughout the best-
   effort IP regions.  The higher these parameters, the higher the gap
   measured between iFCP observed behaviors and baseline iFCP behaviors
   (i.e., as produced by two iFCP gateways directly connected to one
   another).

11.2.  High Assurance

   It is expected that many iFCP deployments will benefit from a high
   degree of assurance regarding the behavior of intervening IP regions,
   with resulting high assurance on the overall end-to-end path, as
   directly experienced by fibre channel applications.  Such assurance
   on the IP behaviors stems from the intervening IP regions supporting
   standard Quality-of-Service (QoS) techniques that are fully
   complementary to iFCP, such as:

   a) congestion avoidance by over-provisioning of the network,

   b) integrated Services [RFC1633] QoS,

   c) differentiated Services [RFC2475] QoS, and

   d) Multi-Protocol Label Switching [RFC3031].

   One may load an MPLS forwarding equivalence class (FEC) with QoS
   class significance, in addition to other considerations such as
   protection and diversity for the given path.  The complementarity and
   compatibility of MPLS with Differentiated Services is explored in
   [MPSLDS], wherein the PHB bits are copied to the EXP bits of the MPLS
   shim header.

   In the most general definition, two iFCP gateways are separated by
   one or more independently managed IP regions that implement some of
   the QoS solutions mentioned above.  A QoS-capable IP region supports
   the negotiation and establishment of a service contract specifying
   the forwarding service through the region.  Such contract and
   negotiation rules are outside the scope of this document.  In the
   case of IP regions with DiffServ QoS, the reader should refer to
   Service Level Specifications (SLS) and Traffic Conditioning
   Specifications (TCS) (as defined in [DIFTERM]).  Other aspects of a

   service contract are expected to be non-technical and thus are
   outside of the IETF scope.

   Because fibre channel Class 2 and Class 3 do not currently support
   fractional bandwidth guarantees, and because iFCP is committed to
   supporting fibre channel semantics, it is impossible for an iFCP
   gateway to infer bandwidth requirements autonomously from streaming
   fibre channel traffic.  Rather, the requirements on bandwidth or
   other network parameters need to be administratively set into an iFCP
   gateway, or into the entity that will actually negotiate the
   forwarding service on the gateway's behalf.  Depending on the QoS
   techniques available, the stipulation of a forwarding service may
   require interaction with network ancillary functions, such as
   admission control and bandwidth brokers (via RSVP or other signaling
   protocols that an IP region may accept).

   The administrator of a iFCP gateway may negotiate a forwarding
   service with IP region(s) for one, several, or all of an iFCP
   gateway's TCP sessions used by an iFCP gateway.  Alternately, this
   responsibility may be delegated to a node downstream.  Since one TCP
   connection is dedicated to each iFCP session, the traffic in an
   individual N_PORT to N_PORT session can be singled out by iFCP-
   unaware network equipment as well.

   For rendering the best emulation of fibre channel possible over IP,
   it is anticipated that typical forwarding services will specify a
   fixed amount of bandwidth, null losses, and, to a lesser degree of
   relevance, low latency and low jitter.  For example, an IP region
   using DiffServ QoS may support SLSes of this nature by applying EF
   DSCPs to the iFCP traffic.

12.  IANA Considerations

   The IANA-assigned port for iFCP traffic is port number 3420.

   An iFCP Portal may initiate a connection using any TCP port number
   consistent with its implementation of the TCP/IP stack, provided each
   port number is unique.  To prevent the receipt of stale data
   associated with a previous connection using a given port number, the
   provisions of [RFC1323], Appendix B, SHOULD be observed.

13.  Normative References

   [AESCBC]  Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm
             and Its Use With IPsec", RFC 3566, September 2003.

   [AESCTR]  Housley, R., "Using Advanced Encryption Standard (AES)
             Counter Mode With IPsec Encapsulating Security Payload
             (ESP)", RFC 3686, January 2004.

   [ENCAP]   Weber, R., Rajagopal, M., Travostino, F., O'Donnell, M.,
             Monia, C., and M. Merhar, "Fibre Channel (FC) Frame
             Encapsulation", RFC 3643, December 2003.

   [FC-FS]   dpANS INCITS.XXX-200X, "Fibre Channel Framing and Signaling
             (FC-FS), Rev 1.70, INCITS Project 1331D, February 2002

   [FC-GS3]  dpANS X3.XXX-200X, "Fibre Channel Generic Services -3 (FC-
             GS3)", revision 7.01, INCITS Project 1356-D, November 2000

   [FC-SW2]  dpANS X3.XXX-2000X, "Fibre Channel Switch Fabric -2 (FC-
             SW2)", revision 5.2, INCITS Project 1305-D, May 2001

   [FCP-2]   dpANS T10, "Fibre Channel Protocol for SCSI, Second
             Version", revision 8, INCITS Project 1144D, September 2002

   [ISNS]    Tseng, J., Gibbons, K., Travostino, F., Du Laney, C., and
             J. Souza, "Internet Storage Name Service (iSNS)", RFC 4171,
             September 2005.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
             Internet Protocol", RFC 2401, November 1998.

   [RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
             2402, November 1998.

   [RFC2404] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
             ESP and AH", RFC 2404, November 1998.

   [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

   [RFC2407] Piper, D., "The Internet IP Security Domain of
             Interpretation for ISAKMP", RFC 2407, N.

   [RFC2408] Maughan, D., Schertler, M., Schneider, M., and J. Turner,
             "Internet Security Association and Key Management Protocol
             (ISAKMP)", RFC 2408, November 1998.

   [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

   [RFC2410] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and
             Its Use With IPsec", RFC 2410, November 1998.

   [RFC2451] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
             Algorithms", RFC 2451, November 1998.

   [RFC793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

   [SECIPS]  Aboba, B., Tseng, J., Walker, J., Rangan, V., and F.
             Travostino, "Securing Block Storage Protocols Over IP", RFC
             3723, April 2004.

14.  Informative References

   [AES]     FIPS Publication XXX, "Advanced Encryption Standard (AES)",
             Draft, 2001, Available from
             http://csrc.nist.gov/publications/drafts/dfips-AES.pdf

   [DIFTERM] Grossman, D., "New Terminology and Clarifications for
             Diffserv", RFC 3260, April 2002.

   [FC-AL2]  dpANS X3.XXX-199X, "Fibre Channel Arbitrated Loop (FC-AL-
             2)", revision 7.0, NCITS Project 1133D, April 1999

   [FC-FLA]  TR-20-199X, "Fibre Channel Fabric Loop Attachment (FC-
             FLA)", revision 2.7, NCITS Project 1235-D, August 1997

   [FC-VI] ANSI/INCITS 357:2002, "Fibre Channel Virtual Interface
             Architecture Mapping Protocol (FC-VI)", NCITS Project
             1332-D, July 2000.

   [KEMALP]  Kembel, R., "The Fibre Channel Consultant, Arbitrated
             Loop", Robert W. Kembel, Northwest Learning Associates,
             2000, ISBN 0-931836-84-0

   [KEMCMP]  Kembel, R., "Fibre Channel, A Comprehensive Introduction",
             Northwest Learning Associates Inc., 2000, ISBN
             0-931836-84-0

   [MPSLDS]  Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
             P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
             Protocol Label Switching (MPLS) Support of Differentiated
             Services", RFC 3270, May 2002.

   [RFC1122] Braden, R., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989.

   [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
             for High Performance", RFC 1323, May 1992.

   [RFC1633] Braden, R., Clark, D., and S. Shenker, "Integrated Services
             in the Internet Architecture: an Overview", RFC 1633, June
             1994.

   [RFC2030] Mills, D., "Simple Network Time Protocol (SNTP) Version 4
             for IPv4, IPv6 and OSI", RFC 2030, October 1996.

   [RFC2405] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher
             Algorithm With Explicit IV", RFC 2405, November 1998.

   [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
             and W. Weiss, "An Architecture for Differentiated Service",
             RFC 2475, December 1998.

   [RFC2625] Rajagopal, M., Bhagwat, R., and W. Rickard, "IP and ARP
             over Fibre Channel", RFC 2625, June 1999.

   [RFC2709] Srisuresh, P., "Security Model with Tunnel-mode IPsec for
             NAT Domains", RFC 2709, October 1999.

   [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC
             2923, September 2000.

   [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
             Label Switching Architecture", RFC 3031, January 2001.

   [RFC896]  Nagle, J., "Congestion control in IP/TCP internetworks",
             RFC 896, January 1984.

Appendix A.  iFCP Support for Fibre Channel Link Services

   For reference purposes, this appendix enumerates all the fibre
   channel link services and the manner in which each shall be processed
   by an iFCP implementation.  The iFCP processing policies are defined
   in Section 7.

   In the following sections, the name of a link service specific to a
   particular FC-4 protocol is prefaced by a mnemonic identifying the
   protocol.

A.1.  Basic Link Services

   The basic link services are shown in the following table:

                        Basic Link Services

      Name             Description                  iFCP Policy
      ----             -----------                  ----------

      ABTS            Abort Sequence                Transparent
      BA_ACC          Basic Accept                  Transparent
      BA_RJT          Basic Reject                  Transparent
      NOP             No Operation                  Transparent
      PRMT            Preempted                     Rejected
                                                      (Applies to
                                                      Class 1 only)
      RMC             Remove Connection             Rejected
                                                      (Applies to
                                                      Class 1 only)

A.2.  Pass-Through Link Services

   As specified in Section 7, the link service requests of Table 10 and
   the associated ACC response frames MUST be passed to the receiving
   N_PORT without altering the payload.

               Name        Description
               ----        -----------

               ADVC         Advise Credit
               CSR          Clock Synchronization Request
               CSU          Clock Synchronization Update
               ECHO         Echo
               ESTC         Estimate Credit
               ESTS         Establish Streaming
               FACT         Fabric Activate Alias_ID
               FAN          Fabric Address Notification

               FCP_RJT      FCP FC-4 Link Service Reject
               FCP SRR      FCP Sequence Retransmission
                             Request
               FDACT        Fabric Deactivate Alias_ID
               FDISC        Discover F_Port Service
                             Parameters
               FLOGI        F_Port Login
               GAID         Get Alias_ID
               LCLM         Login Control List Management
               LINIT        Loop Initialize
               LIRR         Link Incident Record
                             Registration
               LPC          Loop Port Control
               LS_RJT       Link Service Reject
               LSTS         Loop Status
               NACT         N_Port Activate Alias_ID
               NDACT        N_Port Deactivate Alias_ID
               PDISC        Discover N_Port Service
                             Parameters
               PRLI         Process Login
               PRLO         Process Logout
               QoSR         Quality of Service Request
               RCS          Read Connection Status
               RLIR         Registered Link Incident
                             Report
               RNC          Report Node Capability
               RNFT         Report Node FC-4 Types
               RNID         Request Node Identification
                             Data
               RPL          Read Port List
               RPS          Read Port Status Block
               RPSC         Report Port Speed
                             Capabilities
               RSCN         Registered State Change
                             Notification
               RTV          Read Timeout Value
               RVCS         Read Virtual Circuit Status
               SBRP         Set Bit-Error Reporting
                             Parameters
               SCN          State Change Notification
               SCR          State Change Registration
               TEST         Test
               TPLS         Test Process Login State

               Table 10. Pass-Through Link Services

A.3.  Special Link Services

   The extended and FC-4 link services of Table 11 are processed by an
   iFCP implementation as described in the sections referenced in the
   table.

         Name         Description                    Section
         ----         -----------                    -------

         ABTX         Abort Exchange                 7.3.1.1
         ADISC        Discover Address               7.3.1.2
         ADISC        Discover Address Accept        7.3.1.3
         ACC
         FARP-        Fibre Channel Address          7.3.1.4
         REPLY        Resolution Protocol
                       Reply
         FARP-        Fibre Channel Address          7.3.1.5
         REQ          Resolution Protocol
                       Request
         LOGO         N_PORT Logout                  7.3.1.6
         PLOGI        Port Login                     7.3.1.7
         REC          Read Exchange Concise          7.3.1.8
         REC ACC      Read Exchange Concise          7.3.1.9
                       Accept
         FCP REC      FCP Read Exchange             7.3.2.1.1
                       Concise (see [FCP-2])
         FCP REC      FCP Read Exchange             7.3.2.1.2
         ACC          Concise Accept (see
                       [FCP-2])
         RES          Read Exchange Status           7.3.1.10
                       Block
         RES ACC      Read Exchange Status           7.3.1.11
                       Block Accept
         RLS          Read Link Error Status         7.3.1.12
                       Block
         RRQ          Reinstate Recovery             7.3.1.14
                       Qualifier
         RSI          Request Sequence               7.3.1.15
                       Initiative
         RSS          Read Sequence Status           7.3.1.13
                       Block
         SRL          Scan Remote Loop               7.3.1.16
         TPRLO        Third Party Process            7.3.1.17
                       Logout
         TPRLO        Third Party Process            7.3.1.18
         ACC          Logout Accept

                  Table 11. Special Link Services

Appendix B.  Supporting the Fibre Channel Loop Topology

   A loop topology may be optionally supported by a gateway
   implementation in one of the following ways:

   a) By implementing the FL_PORT public loop interface specified in
      [FC-FLA].

   b) By emulating the private loop environment specified in [FC-AL2].

   Private loop emulation allows the attachment of fibre channel devices
   that do not support fabrics or public loops.  The gateway presents
   such devices to the fabric as though they were fabric-attached.
   Conversely, the gateway presents devices on the fabric, whether they
   are locally or remotely attached, as though they were connected to
   the private loop.

   Private loop support requires gateway emulation of the loop
   primitives and control frames specified in [FC-AL2].  These frames
   and primitives MUST be locally emulated by the gateway.  Loop control
   frames MUST NOT be sent over an iFCP session.

B.1.  Remote Control of a Public Loop

   A gateway MAY disclose that a remotely attached device is connected
   to a public loop.  If it does, it MUST also provide aliases
   representing the corresponding Loop Fabric Address (LFA), DOMAIN_ID,
   and FL_PORT Address Identifier through which the public loop may be
   remotely controlled.

   The LFA and FL_PORT address identifier both represent an N_PORT that
   services remote loop management requests contained in the LINIT and
   SRL extended link service messages.  To support these messages, the
   gateway MUST allocate an NL_PORT alias so that the corresponding
   alias for the LFA or FL_PORT address identifier can be derived by
   setting the Port ID component of the NL_PORT alias to zero.

Acknowledgements

   The authors are indebted to those who contributed material and who
   took the time to carefully review and critique this specification
   including David Black (EMC), Rory Bolt (Quantum/ATL), Victor Firoiu
   (Nortel), Robert Peglar (XIOtech), David Robinson (Sun), Elizabeth
   Rodriguez, Joshua Tseng (Nishan), Naoke Watanabe (HDS) and members of
   the IPS working group.  For review of the iFCP security policy, the
   authors are further indebted to the authors of the IPS security
   document [SECIPS], which include Bernard Aboba (Microsoft), Ofer
   Biran (IBM), Uri Elzer (Broadcom), Charles Kunziger (IBM), Venkat
   Rangan (Rhapsody Networks), Julian Satran (IBM), Joseph Tardo
   (Broadcom), and Jesse Walker (Intel).

Author's Addresses

   Comments should be sent to the ips mailing list (ips@ece.cmu.edu) or
   to the authors.

   Charles Monia
   7553 Morevern Circle
   San Jose, CA 95135

   EMail: charles_monia@yahoo.com

   Rod Mullendore
   McDATA
   4555 Great America Pkwy
   Suite 301
   Santa Clara, CA 95054

   Phone: 408-519-3986
   EMail: Rod.Mullendore@MCDATA.com

   Franco Travostino
   Nortel
   600 Technology Park Drive
   Billerica, MA 01821 USA

   Phone: 978-288-7708
   EMail: travos@nortel.com

   Wayland Jeong
   TROIKA Networks, Inc.
   2555 Townsgate Road, Suite 105
   Westlake Village, CA  91361

   Phone: 805-371-1377
   EMail: wayland@TroikaNetworks.com

   Mark Edwards
   Adaptec (UK) Ltd.
   4th Floor, Howard House
   Queens Ave, UK.  BS8 1SD

   Phone: +44 (0)117 930 9600
   EMail: mark_edwards@adaptec.com

Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

 

User Contributions:

Comment about this RFC, ask questions, or add new information about this topic: