Network Working Group K. White
Request for Comments: 2562 IBM Corp.
Category: Standards Track R. Moore
IBM Corp.
April 1999
Definitions of Protocol and Managed Objects for
TN3270E Response Time Collection Using SMIv2
(TN3270E-RT-MIB)
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
This memo defines the protocol and the Management Information Base
(MIB) for performing response time data collection on TN3270 and
TN3270E sessions by a TN3270E server. The response time data
collected by a TN3270E server is structured to support both
validation of service level agreements and performance monitoring of
TN3270 and TN3270E Sessions. This MIB has as a prerequisite the
TN3270E-MIB, reference [20].
TN3270E, defined by RFC 2355 [19], refers to the enhancements made to
the Telnet 3270 (TN3270) terminal emulation practices. Refer to RFC
1041 [18], STD 8, RFC 854 [16], and STD 31, RFC 860 [17] for a sample
of what is meant by TN3270 practices.
Table of Contents
1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . 2
2.0 The SNMP Network Management Framework . . . . . . . . . . 2
3.0 Response Time Collection Methodology . . . . . . . . . . . 3
3.1 General Response Time Collection . . . . . . . . . . . . . 3
3.2 TN3270E Server Response Time Collection . . . . . . . . . 5
3.3 Correlating TN3270E Server and Host Response Times . . . . 10
3.4 Timestamp Calculation . . . . . . . . . . . . . . . . . . 11
3.4.1 DR Usage . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 TIMING-MARK Usage . . . . . . . . . . . . . . . . . . 13
3.5 Performance Data Modelling . . . . . . . . . . . . . . . . 15
3.5.1 Averaging Response Times . . . . . . . . . . . . . . . 15
3.5.2 Response Time Buckets . . . . . . . . . . . . . . . . 18
4.0 Structure of the MIB . . . . . . . . . . . . . . . . . . . 19
4.1 tn3270eRtCollCtlTable . . . . . . . . . . . . . . . . . . 19
4.2 tn3270eRtDataTable . . . . . . . . . . . . . . . . . . . . 23
4.3 Notifications . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Advisory Spin Lock Usage . . . . . . . . . . . . . . . . . 26
5.0 Definitions . . . . . . . . . . . . . . . . . . . . . . . 26
6.0 Security Considerations . . . . . . . . . . . . . . . . . 45
7.0 Intellectual Property . . . . . . . . . . . . . . . . . . 45
8.0 Acknowledgments . . . . . . . . . . . . . . . . . . . . . 46
9.0 References . . . . . . . . . . . . . . . . . . . . . . . . 46
10.0 Authors' Addresses . . . . . . . . . . . . . . . . . . . 48
11.0 Full Copyright Statement . . . . . . . . . . . . . . . . 49
1.0 Introduction
This document is a product of the TN3270E Working Group. It defines
a protocol and a MIB module to enable a TN3270E server to collect and
keep track of response time data for both TN3270 and TN3270E clients.
Basis for implementing this MIB:
o TN3270E-MIB, Base Definitions of Managed Objects for TN3270E
Using SMIv2 [20]
o TN3270E RFCs
o Telnet Timing Mark Option RFC [17].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119, reference
[23].
2.0 The SNMP Network Management Framework
The SNMP Management Framework presently consists of five major
components:
o An overall architecture, described in RFC 2271 [1].
o Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in STD
16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
second version, called SMIv2, is described in RFC 1902 [5], RFC
1903 [6] and RFC 1904 [7].
o Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC 1157 [8]. A second version of the SNMP
message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC
1906 [10]. The third version of the message protocol is called
SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274
[12].
o Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [8]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[13].
o A set of fundamental applications described in RFC 2273 [14] and
the view-based access control mechanism described in RFC 2275
[15].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
3.0 Response Time Collection Methodology
This section explains the methodology and approach used by the MIB
defined by this memo for response time data collection by a TN3270E
server.
3.1 General Response Time Collection
Two primary methods exist for measuring response times in SNA
networks:
o The Systems Network Architecture Management Services (SNA/MS)
Response Time Monitoring (RTM) function.
o Timestamping using definite response flows.
This memo defines an approach using definite responses to timestamp
the flows between a client and its TN3270E server, rather than by use
of the RTM method. Extensions to the SNA/MS RTM flow were considered,
but this approach was deemed unsuitable since not all TN3270E server
implementations have access to their underlying SNA stacks. The RTM
concepts of keeping response time buckets for service level
agreements and of interval-based response time collection for
performance monitoring are preserved in the MIB module defined in
this memo.
As mentioned, this memo focuses on using definite responses to
timestamp the flows between a client and its TN3270E server for
generating performance data. Use of a definite response flow
requires that the client supports TN3270E with the RESPONSES function
negotiated. The TN3270 TIMING-MARK option can be used instead of
definite response for supporting TN3270 clients or TN3270E clients
that don't support RESPONSES. This document focuses first on
defining the protocol and methods for generating performance data
using definite responses, and then describes how the TIMING-MARK
option can be used instead of definite response.
In an SNA network, a transaction between a client Logical Unit (LU)
and a target host in general looks as follows:
------------------------------------------------
| |
| Client LU Target SNA Host |
| |
| Timestamps |
| request A |
| -----------------------------------------> |
| reply(DR) B | |
| <---------------------------------------< |
| | +/-RSP C |
| >---------------------------------------> |
| |
| DR: Definite Response requested |
| +/-RSP: Definite Response |
| |
------------------------------------------------
This transaction is a simple one, and is being used only to
illustrate how timestamping at a target SNA host can be used to
generate response times. An IBM redbook [12] provides a more
detailed description of response time collection for a transaction of
this type. Note that for the purpose of calculating an approximation
for network transit time, it doesn't matter if the response is
positive or negative. Two response time values are typically
calculated:
o Host Transit Time: Timestamp B - Timestamp A
o Network Transit Time: Timestamp C - Timestamp B
Network transit time is an approximation for the amount of time that
a transaction requires to flow across a network, since the response
flow is being substituted for the request flow at the start of the
transaction. Network transit time, timestamp C - timestamp B, is the
amount of time that the definite response request and its response
required. Host time, timestamp B - timestamp A, is the actual time
that the host required to process the transaction. Experience has
shown that using the response flow to approximate network transit
times is useful, and does correlate well with actual network transit
times.
A client SHOULD respond to a definite response request when it
completes processing the transaction. This is important since it
increases the accuracy of a total response time. Clients that
immediately respond to a definite response request will be attributed
with lower total response times then those that actually occurred.
The TN3270E-RT-MIB describes a method of collecting performance data
that is not appropriate for printer (LU Type 1 or LU Type 3)
sessions; thus collection of performance data for printer sessions is
excluded from this MIB. This exclusion of printer sessions is not
considered a problem, since these sessions are not the most important
ones for response time monitoring, and since historically they were
excluded from SNA/MS RTM collection. The tn3270eTcpConnResourceType
object in a tn3270eTcpConnEntry (in the TN3270E-MIB) can be examined
to determine if a client session is ineligible for response time data
collection for this reason.
3.2 TN3270E Server Response Time Collection
A TN3270E server connects a Telnet client performing 3270 emulation
to a target SNA host over both a client-side network (client to
TN3270E server) and an SNA Network (TN3270E server to target SNA
host). The client-side network is typically TCP/IP, but it need not
be. For ease of exposition this document uses the term "IP network"
to refer to the client-side network, since IP is by far the most
common protocol for these networks.
A TN3270E server can use SNA definite responses and the TN3270
Enhancement (RFC 2355 [19]) RESPONSES function to calculate response
times for a transaction, by timestamping when a client request
arrives at the server, when the reply arrives from the target host,
and when the response acknowledging this reply arrives from the
client.
Section 3.4, Timestamp Calculation, provides specifics on when in the
sequence of flows between a TN3270E client and its target SNA host a
TN3270E server takes the required timestamps. In addition, it
provides information on how a TN3270 TIMING-MARK request/response
flow can be used instead of DR for approximating IP network transit
times.
The following figure adds a TN3270E server between the client, in
this case a TN3270E client and the target SNA host:
------------------------------------------------
| |
| Client TN3270E Target |
| Server SNA Host |
| Timestamps |
| |
| <---IP Network-------><---SNA Network---> |
| |
| request D |
| ------------------------------------------> |
| reply(DR) E | |
| <----------------------------------------< |
| | +/-RSP F |
| >-------------------- - - - - - - - - - > |
| |
------------------------------------------------
A TN3270E server can save timestamp D when it receives a client
request, save timestamp E when the target SNA host replies, and save
timestamp F when the client responds to the definite response request
that flowed with the reply. It doesn't matter whether the target SNA
host requested a definite response on its reply: if it didn't, the
TN3270E server makes the request on its own, to enable it to produce
timestamp F. In this case the TN3270E server does not forward the
response to the target SNA host, as the dotted line in the figure
indicates.
Because it is a special case, a transaction in which a target SNA
host returns an UNBIND in response to a client's request, and the
TN3270E server forwards the UNBIND to the client, is not included in
any response time calculations.
In order to generate timestamp F, a TN3270E server MUST insure that
the transaction specifies DR, and that the TN3270E RESPONSES function
has been negotiated between itself and the client. Negotiation of
the TN3270E RESPONSES function occurs during the client's TN3270E
session initialization. The TN3270E servers that the authors are
aware of do request the RESPONSES function during client session
initialization. TN3270E clients either automatically support the
RESPONSES function, or can be configured during startup to support
it.
Using timestamps D, E, and F the following response times can be
calculated by a TN3270E server:
o Total Response time: Timestamp F - Timestamp D
o IP Network Transit Time: Timestamp F - Timestamp E
Just as in the SNA case presented above, these response times are
also approximations, since the final +/- RSP from the client is being
substituted for the request from the client that began the
transaction.
The MIB provides an object, tn3270eRtCollCtlType, to control several
aspects of response time data collection. One of the available
options in setting up a response time collection policy is to
eliminate the IP-network component altogether. This might be done
because it is determined either that the additional IP network
traffic would not be desirable, or that the IP-network component of
the overall response times is not significant.
Excluding the IP-network component from response times also has an
implication for the way in which response time data is aggregated. A
TN3270E server may find that some of its clients simply don't support
any of the functions necessary for the server to calculate the IP-
network component of response times. For these clients, the most
that the server can calculate is the SNA-network component of their
overall response times; the server records this SNA-network component
as the TOTAL response time each of these clients' transactions. If a
response time collection is aggregating data from a number of
clients, some of which have the support necessary for including the
IP-network component in their total response time calculations, and
some of which do not, then the server aggregates the data differently
depending on whether the collection has been defined to include or
exclude the IP-network component:
o If the IP-network component is included, then transactions for the
clients that don't support calculation of the IP-network component
of their response times are excluded from the aggregation
altogether.
o If the IP-network component is excluded, then total response times
for ALL clients include only the SNA-network component, even
though the server could have included an IP-network component in
the overall response times for some of these clients. The server
does this by setting timestamp F, which marks the end of a
transaction's total response time, equal to timestamp E, the end
of the transaction's SNA-network component.
The principle here is that all the transactions contributing their
response times to an aggregated value MUST make the same
contribution. If the aggregation specifies that an IP-network
component MUST be included in the aggregation's response times, then
transactions for which an IP-network component cannot be calculated
aren't included at all. If the aggregation specifies that an IP-
network component is not to be included, then only the SNA-network
component is used, even for those transactions for which an IP-
network component could have been calculated.
There is one more complication here: the MIB allows a management
application to enable or disable dynamic definite responses for a
response time collection. Once again the purpose of this option is
to give the network operator control over the amount of traffic
introduced into the IP network for response time data collection. A
DYNAMIC definite response is one that the TN3270E server itself adds
to a reply, in a transaction for which the SNA application at the
target SNA host did not specify DR in its reply. When the +/-RSP
comes back from the client, the server uses this response to
calculate timestamp F, but then it does not forward the response on
to the SNA application (since the application is not expecting a
response to its reply).
The dynamic definite responses option is related to the option of
including or excluding the IP-network component of response times
(discussed above) as follows:
o If the IP-network component is excluded, then there is no reason
for enabling dynamic definite responses: the server always sets
timestamp F equal to timestamp E, so the additional IP-network
traffic elicited by a dynamic definite response would serve no
purpose.
o If the IP-network component is included, then enabling dynamic
definite responses causes MORE transactions to be included in the
aggregated response time values:
- For clients that do not support sending of responses, timestamp
F can never be calculated, and so their transactions are never
included in the aggregate.
- For clients that support sending of responses, timestamp F will
always be calculated for transactions in which the host SNA
application specifies DR in its reply, and so these
transactions will always be included in the aggregate.
- For clients that support sending of responses, having dynamic
definite responses enabled for a collection results in the
inclusion of additional transactions in the aggregate:
specifically, those for which the host SNA application did not
specify DR in its reply.
A TN3270E server also has the option of substituting TIMING-MARK
processing for definite responses in calculating the IP-network
component of a transaction's response time. Once again, there is no
reason for the server to do this if the collection has been set up to
exclude the IP-network component altogether in computing response
times.
The MIB is structured to keep counts and averages for total response
times (F - D) and their IP-network components (F - E). A management
application can obviously calculate from these two values an average
SNA-network component (E - D) for the response times. This SNA-
network component includes the SNA node processing time at both the
TN3270E server and at the target application.
A host TN3270E server refers to an implementation where the TN3270E
server is collocated with the Systems Network Architecture (SNA)
System Services Control Point (SSCP) for the dependent Secondary
Logical Units (SLUs) that the server makes available to its clients
for connecting into an SNA network. A gateway TN3270E server resides
on an SNA node other than an SSCP, either an SNA type 2.0 node, a
boundary-function-attached type 2.1 node, or an APPN node acting in
the role of a Dependent LU Requester (DLUR). Host and gateway
TN3270E server implementations typically differ greatly as to their
internal implementation and System Definition (SYSDEF) requirements.
If a host TN3270E server is in the same SNA host as the target
application, then the SNA-network component of a transaction's
response time will approximately equal the host transit time (B - A)
described previously. A host TN3270E server implementation can,
however, typically support the establishment of sessions to target
applications in SNA hosts remote from itself. In this case the SNA-
network component of the response time equals the actual SNA-network
transit time plus two host transit times.
3.3 Correlating TN3270E Server and Host Response Times
It is possible that response time data is collected from TN3270E
servers at the same time as a management application is monitoring
the SNA sessions at a host. For example, a management application
can be monitoring a secondary logical unit (SLU) while retrieving
data from a TN3270E server. Consider the following figure:
------------------------------------------------
| |
| Client TN3270E Target |
| Server SNA Host |
| Timestamps (PLU) |
| (SLU) Timestamps|
| <---IP Network-------><---SNA Network---> |
| |
| request D A |
| ------------------------------------------> |
| reply(DR) E B | |
| <----------------------------------------< |
| | +/-RSP F C |
| >--------------------------------------> |
| |
------------------------------------------------
The following response times are available:
o Target SNA host transit time: Timestamp B - Timestamp A
o Target SNA host network transit time: Timestamp C - Timestamp B
o TN3270E server total response time: Timestamp F - Timestamp D
o TN3270E server IP-network component: Timestamp F - Timestamp E
The value added by the TN3270E server in this situation is its
approximation of the IP-network component of the overall response
time. The IP-network component can be subtracted from the total
network transit time (which can be captured at an SSCP monitoring SNA
traffic from/to the SLU) to see the actual SNA versus IP network
transit times.
The MIB defined by this memo does not specifically address
correlation of the data it contains with response time data collected
by direct monitoring of SNA resources: its focus is exclusively
response time data collection from a TN3270E server perspective. It
has, however, in conjunction with the TN3270E-MIB [10], been
structured to provide the information necessary for correlation
between TN3270E server-provided response time information and that
gathered from directly monitoring SNA resources.
A management application attempting to correlate SNA resource usage
to Telnet clients can monitor either the tn3270eResMapTable or the
tn3270eTcpConnTable to determine resource-to-client address mappings.
Both of these tables are defined by the TN3270E-MIB [10]. Another
helpful table is the tn3270eSnaMapTable, which provides a mapping
between SLU names as they are known at the SSCP (VTAM) and their
local names at the TN3270E server. Neither the
tn3270eClientGroupTable, the tn3270eResPoolTable, nor the
tn3270eClientResMapTable from the TN3270E-MIB can be used for
correlation, since the mappings defined by these tables can overlap,
and may not provide one-to-one mappings.
3.4 Timestamp Calculation
This section goes into more detail concerning when the various
timestamps can be taken as the flows between a TN3270E client and its
target SNA host pass through a TN3270E server. In addition,
information is provided on how the TN3270 TIMING-MARK
request/response flow can be used in place of DR for approximating IP
network transit times.
3.4.1 DR Usage
Consider the following flow:
----------------------------------------------------------
| |
| Client TN3270E Target SNA |
| Server Host |
| Timestamps |
| |
| <---IP Network-------><---SNA Network---> |
| |
| request D (BB,CD,OIC,ER) |
| -------------------------------------------> |
| reply(DR) (FIC,ER,EB) | |
| <-----------------------------------------< |
| reply (MIC,ER) |
| <-----------------------------------------< |
| reply (MIC,ER) |
| <-----------------------------------------< |
| reply E (LIC,DR) |
| <-----------------------------------------< |
| | +/-RSP F |
| >----------------------------------------> |
| |
| BB : Begin Bracket ER : Response by exception |
| EB : End Bracket DR : Definite Response Requested |
| CD : Change Direction FIC : First in chain |
| OIC: Only in chain MIC: Middle in chain |
| LIC: Last in chain |
----------------------------------------------------------
Timestamp D is taken at the TN3270E server when the server has
received data from a client for forwarding to its target SNA host,
and the direction of the SNA session allows the server to forward the
data immediately (either the direction is inbound towards the SNA
host, or the session is between brackets). This is most likely when
the server finds the end of record indicator in the TCP data received
from the client.
The target SNA application returns its reply in one or more SNA
Request Units (RUs); in this example there are four RUs in the reply.
The first RU is marked as first in chain (FIC), the next two are
marked as middle in chain (MIC), and the last is marked as last in
chain (LIC). If the SNA host sends a multiple-RU chain, the server
does not know until the last RU is received whether DR is being
requested. The server's only chance to request DR from the client,
however, comes when it forwards the FIC RU, since this is the only
time that the TN3270E header is included. Since a server may forward
the FIC RU to the client before it receives the LIC RU from the SNA
host, some servers routinely specify DR on all FIC RUs.
If the server has specified DR on the TN3270E request for the FIC RU
in a chain, it takes timestamp E when it forwards the LIC RU to the
client. Since timestamp E is used for calculating the IP-network
time for the transaction, the server SHOULD take timestamp E as close
as possible to its "Telnet edge". The server takes timestamp F when
it receives the RESPONSES response from the client.
A target SNA application doesn't necessarily return data to a client
in a transaction; it may, for example, require more data from the
client before it can formulate a reply. In this case the application
may simply return to the TN3270E server a change of direction
indicator. At this point the server must send something to the
client (typically a Write operation with a WCC) to unlock the
keyboard. If the server specifies DR on the request to the client
triggered by its receipt of the change of direction indicator from
the SNA application, then timestamps E and F can be taken, and the
usual response times can be calculated. When the client sends in the
additional data and gets a textual response from the SNA application,
the server treats this as a separate transaction from the one
involving the change of direction.
3.4.2 TIMING-MARK Usage
It is possible for a TN3270E server to use the TIMING-MARK flow for
approximating IP network transit times. Using TIMING-MARKs would
make it possible for a server to collect performance data for TN3270
clients, as well as for TN3270E clients that do not support the
RESPONSES function. In order for TIMING-MARKs to be used in this
way, a client can't have the NOP option enabled, since responses are
needed to the server's TIMING-MARK requests. An IP network transit
time approximation using a TIMING-MARK is basically the amount of
time it takes for a TN3270 server to receive from a client a response
to a TIMING-MARK request.
To get an estimate for IP network transit time, a TN3270E server
sends a TIMING-MARK request to a client after a LIC RU has been
received, as a means of approximating IP network transit time:
---------------------------------------------------
| |
| Client TN3270E Target |
| Server Host |
| Timestamps |
| |
| <---IP Network-------><---SNA Network---> |
| |
| request D (BB,CD,OIC,ER) |
| -------------------------------------------> |
| reply (FIC,ER,EB) | |
| <-----------------------------------------< |
| reply (MIC,ER) |
| <-----------------------------------------< |
| reply (MIC,ER) |
| <-----------------------------------------< |
| reply E (LIC,ER) |
| <-----------------------------------------< |
| TIMING-MARK Rqst E' |
| <--------------------- |
| | TIMING-MARK Rsp F' |
| >-------------------> |
| |
---------------------------------------------------
The response times can then be calculated as follows:
o TN3270E server total response time:
(Timestamp E - Timestamp D) + (Timestamp F' - Timestamp E')
o TN3270E server IP network time: Timestamp F' - Timestamp E'
If a TN3270E server is performing the TIMING-MARK function
(independent of the response time monitoring use of the function
discussed here), then it most likely has a TIMING-MARK interval for
determining when to examine client sessions for sending the TIMING-
MARK request. This interval, which is ordinarily a global value for
an entire TN3270E server, is represented in the TN3270E-MIB by the
tn3270eSrvrConfTmNopInterval object. A TIMING-MARK request is sent
only if, when it is examined, a client session is found to have had
no activity for a different fixed length of time, represented in the
TN3270E-MIB by the tn3270eSrvrConfTmNopInactTime object.
Servers that support a large number of client sessions should spread
out the TIMING-MARK requests they send to these clients over the
activity interval, rather than sending them all in a single burst,
since otherwise the network may be flooded with TIMING-MARK requests.
When a server uses TIMING-MARKs for approximating response times,
this tends to introduce a natural spreading into its TIMING-MARK
requests, since the requests are triggered by the arrival of traffic
from an SNA host.
A TN3270E server MUST integrate its normal TIMING-MARK processing
with its use of TIMING-MARKs for computing response times. In
particular, it MUST NOT send a second TIMING-MARK request to a client
while waiting for the first to return, since this is ruled out by the
TIMING-MARK protocol itself. If a TIMING-MARK flow has just been
performed for a client shortly before the LIC RU arrives, the server
MAY use the interval from this flow as its approximation for IP
network transit time, (in other words, as its (F' - E') value) when
calculating its approximation for the transaction's total response
time, rather than sending a second TIMING-MARK request so soon after
the preceding one.
Regardless of when the server sends its TIMING-MARK request, the
accuracy of its total response time calculation depends on exactly
when the client responds to the TIMING-MARK request.
3.5 Performance Data Modelling
The following two subsections detail how the TN3270E-RT-MIB models
and controls capture of two types of response time data: average
response times and response time buckets.
3.5.1 Averaging Response Times
Average response times play two different roles in the MIB:
o They are made available for management applications to retrieve.
o They serve as triggers for emitting notifications.
Sliding-window averages are used rather than straight interval-based
averages, because they are often more meaningful, and because they
cause less notification thrashing. Sliding-window average
calculation can, if necessary, be disabled, by setting the sample
period multiplier, tn3270eRtCollCtlSPMult, to 1, and setting the
sample period, tn3270eRtCollCtlSPeriod, to the required collection
interval.
In order to calculate sliding-window averages, a TN3270E server MUST:
o Select a fixed, relatively short, sample period SPeriod; the
default value for SPeriod in the MIB is 20 seconds.
o Select an averaging period multiplier SPMult. The actual
collection interval will then be SPMult times SPeriod. The
default value for SPMult in the MIB is 30, yielding a default
collection interval of 10 minutes. Note that the collection
interval (SPMult*SPeriod) is always a multiple of the sample
period.
Clearlly, SPMult*SPeriod should not be thought of as literally
the averaging period. The average calculated will include
contributions older than that time, and does not weight equally
all contributions since that time. In fact, it gives a smoother
result than a traditional sliding average, as used in finance.
More subtly, it is best to think of the effective averaging
period as being 2*SPMult*SPeriod. To see this, consider how long
the contribution to the result made by a particular transaction
lasts. With a traditional sliding average, it lasts exactly the
averaging period. With the aging mechanism described here, it
has a half-life of SPMult*SPeriod.
o Maintain the following counters to keep track of activity within
the current sample period; these are internal counters, not made
visible to a management application via the MIB.
- T (number of transactions in the period)
- TotalRts (sum of the total response times for all
transactions in the period)
- TotalIpRts (sum of the IP network transit times for all
transactions in the period; note that if IP network transit
times are being excluded from the response time collection,
this value will always be 0).
o Also maintain sliding counters, initialized to zero, for each of
the quantities being counted:
- AvgCountTrans (sliding count of transactions)
- TotalRtsSliding (sliding count of total response times)
- TotalIpRtsSliding (sliding count of IP network transit times)
o At the end of each sample period, update the sliding interval
counters, using the following floating-point calculations:
AvgCountTrans = AvgCountTrans + T
- (AvgCountTrans / SPMult)
TotalRtsSliding = TotalRtsSliding + TotalRts
- (TotalRtsSliding / SPMult)
TotalIpRtsSliding = TotalIpRtsSliding + TotalIpRts
- (TotalIpRtsSliding / SPMult)
Then reset T, TotalRts, and TotalIpRts to zero for use during the
next sample period.
o At the end of a collection interval, update the following MIB
objects as indicated; the floating-point numbers are rounded
rather than truncated.
tn3270eRtDataAvgCountTrans = AvgCountTrans
tn3270eRtDataAvgRt = TotalRtsSliding / AvgCountTrans
tn3270eRtDataAvgIpRt = TotalIpRtsSliding / AvgCountTrans
As expected, if IP network transit times are being excluded from
response time collection, then tn3270eRtDataAvgIpRt will always
return 0.
The sliding transaction counter AvgCountTrans is not used for
updating the MIB object tn3270eRtDataCountTrans: this object is an
ordinary SMI Counter32, which maintains a total count of transactions
since its last discontinuity event. The sliding counters are used
only for calculating averages.
Two mechanisms are present in the MIB to inhibit the generation of an
excessive number of notifications related to average response times.
First, there are high and low thresholds for average response times.
A tn3270eRtExceeded notification is generated the first time a
statistically significant average response time is found to have
exceeded the high threshold. (The test for statistical significance
is described below.) After this, no other tn3270eRtExceeded
notifications are generated until an average response time is found
to have fallen below the low threshold.
The other mechanism to limit notifications is the significance test
for a high average response time. Intuitively, the significance of
an average is directly related to the number of samples that go into
it; so we might be inclined to use a rule such as "for the purpose of
generating tn3270eRtExceeded notifications, ignore average response
times based on fewer than 20 transactions in the sample period."
In the case of response times, however, the number of transactions
sampled in a fixed sampling period is tied to these transactions'
response times. A few transactions with long response times can
guarantee that there will not be many transactions in a sample,
because these transactions "use up" the sampling time. Yet this case
of a few transactions with very poor response times should obviously
be classified as a problem, not as a statistical anomaly based on too
small a sample.
The solution is to make the significance level for a sample a
function of the average response time. A value IdleCount is
specified, which is used to qualify an sample as statistically
significant. In order to determine at a collection interval whether
to generate a tn3270eRtExceeded notification, a TN3270E server uses
the following algorithm:
if AvgCountTrans * ((AvgRt/ThreshHigh - 1) ** 2) >= IdleCount
then generate the notification,
where AvgRt is the value that would be returned by the object
tn3270eRtDataAvgRt at the end of the interval, and the "**" notation
indicates exponientiation.
Two examples illustrate how this algorithm works. Suppose that
IdleCount has been set to 20 transactions, and the high threshold to
200 msecs per transaction. If the average observed response time is
300 msecs, then a notification will be generated only if
AvgCountTrans >= 80. If, however, the observed response time is 500
msecs, then a notification is generated if AvgCountTrans >= 9.
There is no corresponding significance test for the tn3270eRtOkay
notification: this notification is generated based on an average
response time that falls below the low threshold, regardless of the
sample size behind that average.
3.5.2 Response Time Buckets
The MIB also supports collection of response time data into a set of
five buckets. This data is suitable either for verification of
service level agreements, or for monitoring by a management
application to identify performance problems. The buckets provide
counts of transactions whose total response times fall into a set of
specified ranges.
Like everything for a collection, the "total" response times
collected in the buckets are governed by the specification of whether
IP network transit times are to be included in the totals. Depending
on how this option is specified, the response times being counted in
the buckets will either be total response times (F - D), or only SNA
network transit times (effectively E - D, because when it is
excluding the IP-network component of transactions, a server makes
timestamp F identical to timestamp E).
Four bucket boundaries are specified for a response time collection,
resulting in five buckets. The first response time bucket counts
those transactions whose total response times were less than or equal
to Boundary 1, the second bucket counts those whose response times
were greater than Boundary 1 but less than or equal to Boundary 2,
and so on. The fifth bucket is unbounded on the top, counting all
transactions whose response times were greater than Boundary 4.
The four bucket boundaries have default values of: 1 second, 2
seconds, 5 seconds, and 10 seconds, respectively. These values are
the defaults in the 3174 controller's implementation of the SNA/MS
RTM function, and are thought to be appropriate for this MIB as well.
In SNA/MS the counter buckets were (by today's standards) relatively
small, with a maximum value of 65,535. The bucket objects in the MIB
are all Counter32's.
The following figure represents the buckets pictorially:
----------------------------------------------
| |
| Response Time Boundaries |
| | | | | | | |
| | | | | | | |
| | | | | | no |
| 0 B-1 B-2 B-3 B-4 bound|
| | | | | | | |
| |Bucket1|Bucket2|Bucket3|Bucket4|Bucket5| |
| ----------------------------------------- |
| |
----------------------------------------------
4.0 Structure of the MIB
The TN3270E-RT-MIB has the following components:
o tn3270eRtCollCtlTable
o tn3270eRtDataTable
o Notifications
o Advisory Spin Lock Usage
4.1 tn3270eRtCollCtlTable
The tn3270eRtCollCtlTable is indexed by tn3270eSrvrConfIndex and
tn3270eClientGroupName imported from the TN3270E-MIB.
tn3270eSrvrConfIndex identifies within a host a particular TN3270E
server. tn3270eClientGroupName identifies a collection of IP clients
for which response time data is to be collected. The set of clients
is defined using the tn3270eClientGroupTable from the TN3270E-MIB.
A tn3270eRtCollCtlEntry contains the following objects:
--------------------------------------------------
1st Index | tn3270eSrvrConfIndex Unsigned32 |
2nd Index | tn3270eClientGroupName Utf8String |
| tn3270eRtCollCtlType BITS |
| tn3270eRtCollCtlSPeriod Unsigned32 |
| tn3270eRtCollCtlSPMult Unsigned32 |
| tn3270eRtCollCtlThreshHigh Unsigned32 |
| tn3270eRtCollCtlThreshLow Unsigned32 |
| tn3270eRtCollCtlIdleCount Unsigned32 |
| tn3270eRtCollCtlBucketBndry1 Unsigned32 |
| tn3270eRtCollCtlBucketBndry2 Unsigned32 |
| tn3270eRtCollCtlBucketBndry3 Unsigned32 |
| tn3270eRtCollCtlBucketBndry4 Unsigned32 |
| tn3270eRtCollCtlRowStatus RowStatus |
--------------------------------------------------
The tn3270eRtCollCtlType object controls the type(s) of response time
collection that occur, the granularity of the collection, whether
dynamic definite responses SHOULD be initiated, and whether
notifications SHOULD be generated. This object is of BITS SYNTAX,
and thus allows selection of multiple options.
The BITS in the tn3270eRtCollCtlType object have the following
meanings:
o aggregate(0) - If this bit is set to 1, then data SHOULD be
aggregated for the whole client group. In this case there will
be only one row created for the collection in the
tn3270eRtDataTable. The first two indexes for this row,
tn3270eSrvrConfIndex and tn3270eClientGroupName, will have the
same values as the indexes for the corresponding
tn3270eRtCollCtlEntry. The third and fourth indexes of an
aggregated tn3270eRtDataEntry have the values unknown(0)
(tn3270eRtDataClientAddrType) and a zero-length octet string
(tn3270eRtDataClientAddress). The fifth index,
tn3270eRtDataClientPort, has the value 0.
If this bit is set to 0, then a separate entry is created in the
tn3270eRtDataTable from each member of the client group. In this
case tn3270eRtDataClientAddress contains the client's actual IP
Address, tn3270eRtDataClientAddrType indicates the address type,
and tn3270eRtDataClientPort contains the number of the port the
client is using for its TN3270/TN3270E session.
o excludeIpComponent(1) - If this bit is set to 1, then the server
SHOULD exclude the IP-network component from all the response
times for this collection. If the target SNA application
specifies DR in any of its replies, this DR will still be passed
down to the client, and the client's response will still be
forwarded to the application. But this response will play no
role in the server's response time calculations.
If this bit is set to 0, then the server includes in the
collection only those transactions for which it can include an
(approximate) IP-network component in the total response time for
the transaction. This component MAY be derived from a "natural"
DR (if the client supports the RESPONSES function), from a
dynamic DR introduced by the server (if the client supports the
RESPONSES function and the ddr(2) bit has been set to 1), or from
TIMING-MARK processing (if the client supports TIMING-MARKs).
If this bit is set to 1, then the ddr(2) bit is ignored, since
there is no reason for the server to request additional responses
from the client(s) in the group.
o ddr(2) - If this bit is set to 1, then the server SHOULD, for
those clients in the group that support the RESPONSES function,
add a DR request to the FIC reply in each transaction, and use
the client's subsequent response for calculating an (approximate)
IP-network component to include in the transaction's total
response times.
If this bit is set to 0, then the server does not add a DR
request that it was not otherwise going to add to any replies
from the target SNA application.
If the excludeIpComponent(1) bit is set to 1, then this bit is
ignored by the server.
o average(3) - If this bit is set to 1, then the server SHOULD
calculate a sliding-window average for the collection, based on
the parameters specified for the group.
If this bit is set to 0, then an average is not calculated. In
this case the tn3270eRtExceeded and tn3270eRtOkay notifications
are not generated, even if the traps(5) bit is set to 1.
o buckets(4) - If this bit is set to 1, then the server SHOULD
create and increment response time buckets for the collection,
based on the parameters specified for the group.
If this bit is set to 0, then response time buckets are not
created.
o traps(5) - If this bit is set to 1, then a TN3270E Server is
enabled to generate notifications pertaining to an
tn3270eCollCtlEntry. tn3270CollStart and tn3270CollEnd
generation is enabled simply by traps(5) being set to 1.
tn3270eRtExceeded and tn3270eRtOkay generation enablement
requires that average(3) be set to 1 in addition to the traps(5)
requirement.
If traps(5) is set to 0, then none of the notifications defined
in this MIB are generated for a particular tn3270eRtCollCtlEntry.
Either the average(3) or the buckets(4) bit MUST be set to 1 in order
for response time data collection to occur; both bits MAY be set to
1. If the average(3) bit is set to 1, then the following objects
have meaning, and are used to control the calculation of the
averages, as well as the generation of the two notifications related
to them:
o tn3270eRtCollCtlSPeriod
o tn3270eRtCollCtlSPMult
o tn3270eRtCollCtlThreshHigh
o tn3270eRtCollCtlThreshLow
o tn3270eRtCollCtlIdleCount
The previous objects' values are meaningless if the associated
average(3) bit is not set to 1.
If the buckets(4) bit is set to 1, then the following objects have
meaning, and specify the bucket boundaries:
o tn3270eRtCollCtlBucketBndry1
o tn3270eRtCollCtlBucketBndry2
o tn3270eRtCollCtlBucketBndry3
o tn3270eRtCollCtlBucketBndry4
The previous objects' values are meaningless if the associated
buckets(4) bit is not set to 1.
If an entry in the tn3270RtCollCtlTable has the value active(1) for
its RowStatus, then an implementation SHALL NOT allow Set operations
for any objects in the entry except:
o tn3270eRtCollCtlThreshHigh
o tn3270eRtCollCtlThreshLow
o tn3270eRtCollCtlRowStatus
4.2 tn3270eRtDataTable
Either a single entry or multiple entries are created in the
tn3270eRtDataTable for each tn3270eRtCollCtlEntry, depending on
whether tn3270eRtCollCtlType in the control entry has aggregate(0)
selected. The contents of an entry in the tn3270eRtDataTable depend
on the contents of the corresponding entry in the
tn3270eRtCollCtlTable: as described above, some objects in the data
entry return meaningful values only when the average(3) option is
selected in the control entry, while others return meaningful values
only when the buckets(4) option is selected. If both options are
selected, then all the objects return meaningful values. When an
object is not specified to return a meaningful value, an
implementation may return any syntactically valid value in response
to a Get operation.
The following objects return meaningful values if and only if the
average(3) option was selected in the corresponding
tn3270eRtCollCtlEntry:
o tn3270eRtDataAvgRt
o tn3270eRtDataAvgIpRt
o tn3270eRtDataAvgCountTrans
o tn3270eRtDataIntTimeStamp
o tn3270eRtDataTotalRts
o tn3270eRtDataTotalIpRts
o tn3270eRtDataCountTrans
o tn3270eRtDataCountDrs
o tn3270eRtDataElapsRndTrpSq
o tn3270eRtDataElapsIpRtSq
The first three objects in this list return values derived from the
sliding-window average calculations described earlier. The time of
the most recent sample for these calculations is returned in the
tn3270eRtDataIntTimeStamp object. The next four objects are normal
Counter32 objects, maintaining counts of total response time and
total transactions. The last two objects return sum of the squares
values, to enable variance calculations by a management application.
The following objects return meaningful values if and only if the
buckets(4) option was selected in the corresponding
tn3270eRtCollCtlEntry:
o tn3270eRtDataBucket1Rts
o tn3270eRtDataBucket2Rts
o tn3270eRtDataBucket3Rts
o tn3270eRtDataBucket4Rts
o tn3270eRtDataBucket5Rts
A discontinuity object, tn3270eRtDataDiscontinuityTime, can be used
by a management application to detect when the values of the counter
objects in this table may have been reset, or otherwise experienced a
discontinuity. A possible cause for such a discontinuity is the
TN3270E server's being stopped or restarted. This object returns a
meaningful value regardless of which collection control options were
selected.
An object, tn3270eRtDataRtMethod, identifies whether the IP Network
Time was calculated using either the definite response or TIMING-MARK
approach.
When an entry is created in the tn3270eRtCollCtlTable with its
tn3270eRtCollCtlType aggregate(0) bit set to 1, an entry is
automatically created in the tn3270eRtDataTable; this entry's
tn3270eRtDataClientAddress has the value of a zero-length octet
string, its tn3270eRtDataClientAddrType has the value of unknown(0),
and its tn3270eRtDataClientPort has the value 0.
When an entry is created in the tn3270eRtCollCtlTable with its
tn3270eRtCollCtlType aggregate(0) bit set to 0, a separate entry is
created in the tn3270eRtDataTable for each member of the client group
that currently has a session with the TN3270E server. Entries are
subsequently created for clients that the TN3270E server determines
to be members of the client group when these clients establish
sessions with the server. Entries are also created when clients with
existing sessions are added to the group.
All entries associated with a tn3270eRtCollCtlEntry are deleted from
the tn3270eRtDataTable when that entry is deleted from the
tn3270eRtCollCtlTable. An entry for an individual client in a client
group is deleted when its TCP connection terminates. Once it has
been created, a client's entry in the tn3270eRtDataTable remains
active as long as the collection's tn3270eRtCollCtlEntry exists, even
if the client is removed from the client group for the
tn3270eRtCollCtlEntry.
4.3 Notifications
This MIB defines four notifications related to a tn3270eRtDataEntry.
If the associated tn3270eRtCollCtlType object's traps(5) bit is set
to 1, then the tn3270RtCollStart and tn3270RtCollEnd notifications
are generated when, respsectively, the tn3270eRtDataEntry is created
and deleted. If, in addition, this tn3270eRtCollCtlType object's
average(3) bit is set to 1, then the the tn3270eRtExceeded and
tn3270eRtOkay notifications are generated when the conditions they
report occur.
The following notifications are defined by this MIB:
o tn3270eRtExceeded - The purpose of this notification is to signal
that a performance problem has been detected. If average(3)
response time data is being collected, then this notification is
generated whenever (1) an average response time is first found,
on a collection interval boundary, to have exceeded the high
threshold tn3270eRtCollCtlThreshHigh specified for the client
group, AND (2) the sample on which the average is based is
determined to have been a significant one, via the significance
algorithm described earlier. This notification is not generated
again for a tn3270eRtDataEntry until an average response time
falling below the low threshold tn3270eRtCollCtlThreshLow
specified for the client group has occurred for the entry.
o tn3270eRtOkay - The purpose of this notification is to signal
that a previously reported performance problem has been resolved.
If average(3) response time data is being collected, then this
notification is generated whenever (1) a tn3270eRtExceeded
notification has already been generated, AND (2) an average
response time is first found, on a collection interval boundary,
to have fallen below the low threshold tn3270eRtCollCtlThreshLow
specified for the client group. This notification is not
generated again for a tn3270eRtDataEntry until an average
response time exceeding the high threshold
tn3270eRtCollCtlThreshHigh specified for the client group has
occurred for the entry.
Taken together, the two preceding notifications serve to minimize the
generation of an excessive number of traps in the case of an average
response time that oscillates about its high threshold.
o tn3270eRtCollStart - This notification is generated whenever data
collection begins for a client group, or when a new
tn3270eRtDataEntry becomes active. The primary purpose of this
notification is signal to a management application that a new
client TCP session has been established, and to provide the IP-
to-resource mapping for the session. This notification is not
critical when average(3) data collection is not being performed
for the client group.
o tn3270eRtCollEnd - This notification is generated whenever a data
collection ends. For an aggregate collection, this occurs when
the corresponding tn3270eRtCollCtlEntry is deleted. For an
individual collection, this occurs either when the
tn3270eRtCollCtlEntry is deleted, or when the client's TCP
connection terminates. The purpose of this notification is to
enable a management application to complete a monitoring function
that it was performing, by returning final values for the
collection's data objects.
4.4 Advisory Spin Lock Usage
Within the TN3270E-RT-MIB, tn3270eRtSpinLock is defined as an
advisory lock that allows cooperating TN3270E-RT-MIB applications to
coordinate their use of the tn3270eRtCollCtlTable. When creating a
new entry or altering an existing entry in the tn3270eRtCollCtlTable,
an application SHOULD make use of tn3270eRtSpinLock to serialize
application changes or additions. Since this is an advisory lock,
its use by management applications SHALL NOT be enforced by agents.
Agents MUST, however, implement the tn3270eRtSpinLock object.
5.0 Definitions
TN3270E-RT-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Counter32, Unsigned32, Gauge32
FROM SNMPv2-SMI
RowStatus, DateAndTime, TimeStamp, TestAndIncr
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF
tn3270eSrvrConfIndex, tn3270eClientGroupName,
tn3270eResMapElementType
FROM TN3270E-MIB
IANATn3270eAddrType, IANATn3270eAddress
FROM IANATn3270eTC-MIB
snanauMIB
FROM SNA-NAU-MIB;
tn3270eRtMIB MODULE-IDENTITY
LAST-UPDATED "9807270000Z" -- July 27, 1998
ORGANIZATION "TN3270E Working Group"
CONTACT-INFO
"Kenneth White (kennethw@vnet.ibm.com)
IBM Corp. - Dept. BRQA/Bldg. 501/G114
P.O. Box 12195
3039 Cornwallis
RTP, NC 27709-2195
Robert Moore (remoore@us.ibm.com)
IBM Corp. - Dept. BRQA/Bldg. 501/G114
P.O. Box 12195
3039 Cornwallis
RTP, NC 27709-2195
(919) 254-4436"
DESCRIPTION
"This module defines a portion of the management
information base (MIB) that enables monitoring of
TN3270 and TN3270E clients' response times by a
TN3270E server."
REVISION "9807270000Z" -- July 27, 1998
DESCRIPTION
"RFC nnnn (Proposed Standard)" -- RFC Editor to fill in
::= { snanauMIB 9 }
-- snanauMIB ::= { mib-2 34 }
-- Top level structure of the MIB
tn3270eRtNotifications OBJECT IDENTIFIER ::= { tn3270eRtMIB 0 }
tn3270eRtObjects OBJECT IDENTIFIER ::= { tn3270eRtMIB 1 }
tn3270eRtConformance OBJECT IDENTIFIER ::= { tn3270eRtMIB 3 }
-- MIB Objects
-- Response Time Control Table
tn3270eRtCollCtlTable OBJECT-TYPE
SYNTAX SEQUENCE OF Tn3270eRtCollCtlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The response time monitoring collection control table,
which allows a management application to control the
types of response time data being collected, and the
clients for which it is being collected.
This table is indexed by tn3270eSrvrConfIndex and
tn3270eClientGroupName imported from the
TN3270E-MIB. tn3270eSrvrConfIndex indicates within
a host which TN3270E server an entry applies to.
tn3270eClientGroupName it identifies the set of IP
clients for which response time data is being collected.
The particular IP clients making up the set are identified
in the tn3270eClientGroupTable in the TN3270E-MIB."
::= { tn3270eRtObjects 1}
tn3270eRtCollCtlEntry OBJECT-TYPE
SYNTAX Tn3270eRtCollCtlEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the TN3270E response time monitoring collection
control table. To handle the case of multiple TN3270E
servers on the same host, the first index of this table is
the tn3270eSrvrConfIndex from the TN3270E-MIB."
INDEX {
tn3270eSrvrConfIndex, -- Server's index
tn3270eClientGroupName } -- What to collect on
::= { tn3270eRtCollCtlTable 1 }
Tn3270eRtCollCtlEntry ::= SEQUENCE {
tn3270eRtCollCtlType BITS,
tn3270eRtCollCtlSPeriod Unsigned32,
tn3270eRtCollCtlSPMult Unsigned32,
tn3270eRtCollCtlThreshHigh Unsigned32,
tn3270eRtCollCtlThreshLow Unsigned32,
tn3270eRtCollCtlIdleCount Unsigned32,
tn3270eRtCollCtlBucketBndry1 Unsigned32,
tn3270eRtCollCtlBucketBndry2 Unsigned32,
tn3270eRtCollCtlBucketBndry3 Unsigned32,
tn3270eRtCollCtlBucketBndry4 Unsigned32,
tn3270eRtCollCtlRowStatus RowStatus }
-- The OID { tn3270eRtCollCtlEntry 1 } is not used
tn3270eRtCollCtlType OBJECT-TYPE
SYNTAX BITS {
aggregate(0),
excludeIpComponent(1),
ddr(2),
average(3),
buckets(4),
traps(5)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object controls what types of response time data to
collect, whether to summarize the data across the members
of a client group or keep it individually, whether to
introduce dynamic definite responses, and whether to
generate traps.
aggregate(0) - Aggregate response time data for the
client group as a whole. If this bit
is set to 0, then maintain response
time data separately for each member
of the client group.
excludeIpComponent(1) - Do not include the IP-network
component in any response times.
ddr(2) - Enable dynamic definite response.
average(3) - Produce an average response time
based on a specified collection
interval.
buckets(4) - Maintain tn3270eRtDataBucket values in
a corresponding tn3270eRtDataEntry,
based on the bucket boundaries specified
in the tn3270eRtCollCtlBucketBndry
objects .
traps(5) - generate the notifications specified
in this MIB module. The
tn3270eRtExceeded and tn3270eRtOkay
notifications are generated only if
average(3) is also specified."
::= { tn3270eRtCollCtlEntry 2 }
tn3270eRtCollCtlSPeriod OBJECT-TYPE
SYNTAX Unsigned32 (15..86400) -- 15 second min, 24 hour max
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The number of seconds that defines the sample period.
The actual interval is defined as tn3270eRtCollCtlSPeriod
times tn3270eRtCollCtlSPMult.
The value of this object is used only if the corresponding
tn3270eRtCollCtlType has the average(3) setting."
DEFVAL {20} -- 20 seconds
::= { tn3270eRtCollCtlEntry 3 }
tn3270eRtCollCtlSPMult OBJECT-TYPE
SYNTAX Unsigned32 (1..5760) -- 5760 x SPeriod of 15 is 24 hours
UNITS "period"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The sample period multiplier; this value is multiplied by
the sample period, tn3270eRtCollCtlSPeriod, to determine
the collection interval.
Sliding-window average calculation can, if necessary, be
disabled, by setting the sample period multiplier,
tn3270eRtCollCtlSPMult, to 1, and setting the sample
period, tn3270eRtCollCtlSPeriod, to the required
collection interval.
The value of this object is used only if the corresponding
tn3270eRtCollCtlType has the average(3) setting."
DEFVAL { 30 } -- yields an interval of 10 minutes when
-- used with the default SPeriod value
::= { tn3270eRtCollCtlEntry 4 }
tn3270eRtCollCtlThreshHigh OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The threshold for generating a tn3270eRtExceeded
notification, signalling that a monitored total response
time has exceeded the specified limit. A value of zero
for this object suppresses generation of this notification.
The value of this object is used only if the corresponding
tn3270eRtCollCtlType has average(3) and traps(5) selected.
A tn3270eRtExceeded notification is not generated again for a
tn3270eRtDataEntry until an average response time falling below
the low threshold tn3270eRtCollCtlThreshLow specified for the
client group has occurred for the entry."
DEFVAL { 0 } -- suppress notifications
::= { tn3270eRtCollCtlEntry 5 }
tn3270eRtCollCtlThreshLow OBJECT-TYPE
SYNTAX Unsigned32
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The threshold for generating a tn3270eRtOkay notification,
signalling that a monitored total response time has fallen
below the specified limit. A value of zero for this object
suppresses generation of this notification. The value of
this object is used only if the corresponding
tn3270eRtCollCtlType has average(3) and traps(5) selected.
A tn3270eRtOkay notification is not generated again for a
tn3270eRtDataEntry until an average response time
exceeding the high threshold tn3270eRtCollCtlThreshHigh
specified for the client group has occurred for the entry."
DEFVAL { 0 } -- suppress notifications
::= { tn3270eRtCollCtlEntry 6 }
tn3270eRtCollCtlIdleCount OBJECT-TYPE
SYNTAX Unsigned32
UNITS "transactions"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object is used to determine whether a
sample that yields an average response time exceeding the
value of tn3270eRtCollCtlThreshHigh was a statistically
valid one. If the following statement is true, then the
sample was statistically valid, and so a tn3270eRtExceeded
notification should be generated:
AvgCountTrans * ((AvgRt/ThreshHigh - 1) ** 2) >= IdleCount
This comparison is done only if the corresponding
tn3270eRtCollCtlType has average(3) and traps(5) selected."
DEFVAL { 1 }
::= { tn3270eRtCollCtlEntry 7 }
tn3270eRtCollCtlBucketBndry1 OBJECT-TYPE
SYNTAX Unsigned32
UNITS "tenths of seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object defines the range of transaction
response times counted in the Tn3270eRtDataBucket1Rts
object: those less than or equal to this value."
DEFVAL { 10 }
::= { tn3270eRtCollCtlEntry 8 }
tn3270eRtCollCtlBucketBndry2 OBJECT-TYPE
SYNTAX Unsigned32
UNITS "tenths of seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object, together with that of the
tn3270eRtCollCtlBucketBndry1 object, defines the range
of transaction response times counted in the
Tn3270eRtDataBucket2Rts object: those greater than the
value of the tn3270eRtCollCtlBucketBndry1 object, and
less than or equal to the value of this object."
DEFVAL { 20 }
::= { tn3270eRtCollCtlEntry 9 }
tn3270eRtCollCtlBucketBndry3 OBJECT-TYPE
SYNTAX Unsigned32
UNITS "tenths of seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object, together with that of the
tn3270eRtCollCtlBucketBndry2 object, defines the range of
transaction response times counted in the
Tn3270eRtDataBucket3Rts object: those greater than the
value of the tn3270eRtCollCtlBucketBndry2 object, and less
than or equal to the value of this object."
DEFVAL { 50 }
::= { tn3270eRtCollCtlEntry 10 }
tn3270eRtCollCtlBucketBndry4 OBJECT-TYPE
SYNTAX Unsigned32
UNITS "tenths of seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object, together with that of the
tn3270eRtCollCtlBucketBndry3 object, defines the range
of transaction response times counted in the
Tn3270eRtDataBucket4Rts object: those greater than the
value of the tn3270eRtCollCtlBucketBndry3 object, and
less than or equal to the value of this object.
The value of this object also defines the range of
transaction response times counted in the
Tn3270eRtDataBucket5Rts object: those greater than the
value of this object."
DEFVAL { 100 }
::= { tn3270eRtCollCtlEntry 11 }
tn3270eRtCollCtlRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object allows entries to be created and deleted
in the tn3270eRtCollCtlTable. An entry in this table
is deleted by setting this object to destroy(6).
Deleting an entry in this table has the side-effect
of removing all entries from the tn3270eRtDataTable
that are associated with the entry being deleted."
::= { tn3270eRtCollCtlEntry 12 }
-- TN3270E Response Time Data Table
tn3270eRtDataTable OBJECT-TYPE
SYNTAX SEQUENCE OF Tn3270eRtDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The response time data table. Entries in this table are
created based on entries in the tn3270eRtCollCtlTable."
::= { tn3270eRtObjects 2 }
tn3270eRtDataEntry OBJECT-TYPE
SYNTAX Tn3270eRtDataEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Entries in this table are created based upon the
tn3270eRtCollCtlTable. When the corresponding
tn3270eRtCollCtlType has aggregate(0) specified, a single
entry is created in this table, with a tn3270eRtDataClientAddrType
of unknown(0), a zero-length octet string value for
tn3270eRtDataClientAddress, and a tn3270eRtDataClientPort value of
0. When aggregate(0) is not specified, a separate entry is
created for each client in the group.
Note that the following objects defined within an entry in this
table can wrap:
tn3270eRtDataTotalRts
tn3270eRtDataTotalIpRts
tn3270eRtDataCountTrans
tn3270eRtDataCountDrs
tn3270eRtDataElapsRnTrpSq
tn3270eRtDataElapsIpRtSq
tn3270eRtDataBucket1Rts
tn3270eRtDataBucket2Rts
tn3270eRtDataBucket3Rts
tn3270eRtDataBucket4Rts
tn3270eRtDataBucket5Rts"
INDEX {
tn3270eSrvrConfIndex, -- Server's local index
tn3270eClientGroupName, -- Collection target
tn3270eRtDataClientAddrType,
tn3270eRtDataClientAddress,
tn3270eRtDataClientPort }
::= { tn3270eRtDataTable 1 }
Tn3270eRtDataEntry ::= SEQUENCE {
tn3270eRtDataClientAddrType IANATn3270eAddrType,
tn3270eRtDataClientAddress IANATn3270eAddress,
tn3270eRtDataClientPort Unsigned32,
tn3270eRtDataAvgRt Gauge32,
tn3270eRtDataAvgIpRt Gauge32,
tn3270eRtDataAvgCountTrans Gauge32,
tn3270eRtDataIntTimeStamp DateAndTime,
tn3270eRtDataTotalRts Counter32,
tn3270eRtDataTotalIpRts Counter32,
tn3270eRtDataCountTrans Counter32,
tn3270eRtDataCountDrs Counter32,
tn3270eRtDataElapsRndTrpSq Unsigned32,
tn3270eRtDataElapsIpRtSq Unsigned32,
tn3270eRtDataBucket1Rts Counter32,
tn3270eRtDataBucket2Rts Counter32,
tn3270eRtDataBucket3Rts Counter32,
tn3270eRtDataBucket4Rts Counter32,
tn3270eRtDataBucket5Rts Counter32,
tn3270eRtDataRtMethod INTEGER,
tn3270eRtDataDiscontinuityTime TimeStamp
}
tn3270eRtDataClientAddrType OBJECT-TYPE
SYNTAX IANATn3270eAddrType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Indicates the type of address represented by the value
of tn3270eRtDataClientAddress. The value unknown(0) is
used if aggregate data is being collected for the client
group."
::= { tn3270eRtDataEntry 1 }
tn3270eRtDataClientAddress OBJECT-TYPE
SYNTAX IANATn3270eAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the IP address of the TN3270 client being
monitored. A zero-length octet string is used if
aggregate data is being collected for the client group."
::= { tn3270eRtDataEntry 2 }
tn3270eRtDataClientPort OBJECT-TYPE
SYNTAX Unsigned32(0..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Contains the client port number of the TN3270 client being
monitored. The value 0 is used if aggregate data is being
collected for the client group, or if the
tn3270eRtDataClientAddrType identifies an address type that
does not support ports."
::= { tn3270eRtDataEntry 3 }
tn3270eRtDataAvgRt OBJECT-TYPE
SYNTAX Gauge32
UNITS "tenths of seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The average total response time measured over the last
collection interval."
DEFVAL { 0 }
::= { tn3270eRtDataEntry 4 }
tn3270eRtDataAvgIpRt OBJECT-TYPE
SYNTAX Gauge32
UNITS "tenths of seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The average IP response time measured over the last
collection interval."
DEFVAL { 0 }
::= { tn3270eRtDataEntry 5 }
tn3270eRtDataAvgCountTrans OBJECT-TYPE
SYNTAX Gauge32
UNITS "transactions"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The sliding transaction count used for calculating the
values of the tn3270eRtDataAvgRt and tn3270eRtDataAvgIpRt
objects. The actual transaction count is available in
the tn3270eRtDataCountTrans object.
The initial value of this object, before any averages have
been calculated, is 0."
::= { tn3270eRtDataEntry 6 }
tn3270eRtDataIntTimeStamp OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The date and time of the last interval that
tn3270eRtDataAvgRt, tn3270eRtDataAvgIpRt, and
tn3270eRtDataAvgCountTrans were calculated.
Prior to the calculation of the first interval
averages, this object returns the value
0x0000000000000000000000. When this value is
returned, the remaining objects in the entry have
no significance."
::= { tn3270eRtDataEntry 7 }
tn3270eRtDataTotalRts OBJECT-TYPE
SYNTAX Counter32
UNITS "tenths of seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the total response times collected.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 8 }
tn3270eRtDataTotalIpRts OBJECT-TYPE
SYNTAX Counter32
UNITS "tenths of seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the total IP-network response times
collected.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 9 }
tn3270eRtDataCountTrans OBJECT-TYPE
SYNTAX Counter32
UNITS "transactions"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the total number of transactions detected.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 10 }
tn3270eRtDataCountDrs OBJECT-TYPE
SYNTAX Counter32
UNITS "definite responses"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the total number of definite responses
detected.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 11 }
tn3270eRtDataElapsRndTrpSq OBJECT-TYPE
SYNTAX Unsigned32
UNITS "tenths of seconds squared"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The sum of the elapsed round trip time squared. The sum
of the squares is kept in order to enable calculation of
a variance."
DEFVAL { 0 }
::= { tn3270eRtDataEntry 12 }
tn3270eRtDataElapsIpRtSq OBJECT-TYPE
SYNTAX Unsigned32
UNITS "tenths of seconds squared"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The sum of the elapsed IP round trip time squared.
The sum of the squares is kept in order to enable
calculation of a variance."
DEFVAL { 0 }
::= { tn3270eRtDataEntry 13 }
tn3270eRtDataBucket1Rts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the response times falling into bucket 1.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 14 }
tn3270eRtDataBucket2Rts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the response times falling into bucket 2.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 15 }
tn3270eRtDataBucket3Rts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the response times falling into bucket 3.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 16 }
tn3270eRtDataBucket4Rts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the response times falling into bucket 4.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 17 }
tn3270eRtDataBucket5Rts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The count of the response times falling into bucket 5.
A management application can detect discontinuities in this
counter by monitoring the tn3270eRtDataDiscontinuityTime
object."
::= { tn3270eRtDataEntry 18 }
tn3270eRtDataRtMethod OBJECT-TYPE
SYNTAX INTEGER {
none(0),
responses(1),
timingMark(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object indicates the method that was
used in calculating the IP network time.
The value 'none(0) indicates that response times were not
calculated for the IP network."
::= { tn3270eRtDataEntry 19 }
tn3270eRtDataDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime on the most recent occasion at
which one or more of this entry's counter objects
suffered a discontinuity. This may happen if a TN3270E
server is stopped and then restarted, and local methods
are used to set up collection policy
(tn3270eRtCollCtlTable entries)."
::= { tn3270eRtDataEntry 20 }
tn3270eRtSpinLock OBJECT-TYPE
SYNTAX TestAndIncr
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"An advisory lock used to allow cooperating TN3270E-RT-MIB
applications to coordinate their use of the
tn3270eRtCollCtlTable.
When creating a new entry or altering an existing entry
in the tn3270eRtCollCtlTable, an application should make
use of tn3270eRtSpinLock to serialize application changes
or additions.
Since this is an advisory lock, the use of this lock is
not enforced."
::= { tn3270eRtObjects 3 }
-- Notifications
tn3270eRtExceeded NOTIFICATION-TYPE
OBJECTS {
tn3270eRtDataIntTimeStamp,
tn3270eRtDataAvgRt,
tn3270eRtDataAvgIpRt,
tn3270eRtDataAvgCountTrans,
tn3270eRtDataRtMethod
}
STATUS current
DESCRIPTION
"This notification is generated when the average response
time, tn3270eRtDataAvgRt, exceeds
tn3270eRtCollCtlThresholdHigh at the end of a collection
interval specified by tn3270eCollCtlSPeriod
times tn3270eCollCtlSPMult. Note that the corresponding
tn3270eCollCtlType must have traps(5) and average(3) set
for this notification to be generated. In addition,
tn3270eRtDataAvgCountTrans, tn3270eRtCollCtlThreshHigh, and
tn3270eRtDataAvgRt are algorithmically compared to
tn3270eRtCollCtlIdleCount for determination if this
notification will be suppressed."
::= { tn3270eRtNotifications 1 }
tn3270eRtOkay NOTIFICATION-TYPE
OBJECTS {
tn3270eRtDataIntTimeStamp,
tn3270eRtDataAvgRt,
tn3270eRtDataAvgIpRt,
tn3270eRtDataAvgCountTrans,
tn3270eRtDataRtMethod
}
STATUS current
DESCRIPTION
"This notification is generated when the average response
time, tn3270eRtDataAvgRt, falls below
tn3270eRtCollCtlThresholdLow at the end of a collection
interval specified by tn3270eCollCtlSPeriod times
tn3270eCollCtlSPMult, after a tn3270eRtExceeded
notification was generated. Note that the corresponding
tn3270eCollCtlType must have traps(5) and average(3)
set for this notification to be generated."
::= { tn3270eRtNotifications 2 }
tn3270eRtCollStart NOTIFICATION-TYPE
OBJECTS {
tn3270eRtDataRtMethod, -- type of collection
tn3270eResMapElementType -- type of resource
}
STATUS current
DESCRIPTION
"This notification is generated when response time data
collection is enabled for a member of a client group.
In order for this notification to occur the corresponding
tn3270eRtCollCtlType must have traps(5) selected.
tn3270eResMapElementType contains a valid value only if
tn3270eRtDataClientAddress contains a valid address
(rather than a zero-length octet string)."
::= { tn3270eRtNotifications 3 }
tn3270eRtCollEnd NOTIFICATION-TYPE
OBJECTS {
tn3270eRtDataDiscontinuityTime,
tn3270eRtDataAvgRt,
tn3270eRtDataAvgIpRt,
tn3270eRtDataAvgCountTrans,
tn3270eRtDataIntTimeStamp,
tn3270eRtDataTotalRts,
tn3270eRtDataTotalIpRts,
tn3270eRtDataCountTrans,
tn3270eRtDataCountDrs,
tn3270eRtDataElapsRndTrpSq,
tn3270eRtDataElapsIpRtSq,
tn3270eRtDataBucket1Rts,
tn3270eRtDataBucket2Rts,
tn3270eRtDataBucket3Rts,
tn3270eRtDataBucket4Rts,
tn3270eRtDataBucket5Rts,
tn3270eRtDataRtMethod
}
STATUS current
DESCRIPTION
"This notification is generated when an tn3270eRtDataEntry
is deleted after being active (actual data collected), in
order to enable a management application monitoring an
tn3270eRtDataEntry to get the entry's final values. Note
that the corresponding tn3270eCollCtlType must have traps(5)
set for this notification to be generated."
::= { tn3270eRtNotifications 4 }
-- Conformance Statement
tn3270eRtGroups OBJECT IDENTIFIER ::= { tn3270eRtConformance 1 }
tn3270eRtCompliances OBJECT IDENTIFIER ::= { tn3270eRtConformance 2 }
-- Compliance statements
tn3270eRtCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for agents that support the
TN327E-RT-MIB."
MODULE -- this module
MANDATORY-GROUPS { tn3270eRtGroup, tn3270eRtNotGroup }
OBJECT tn3270eRtCollCtlType
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation to
this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlSPeriod
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to allow the user to change
the default value of this object, and is allowed to
use a different default."
OBJECT tn3270eRtCollCtlSPMult
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlThreshHigh
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlThreshLow
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlIdleCount
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlBucketBndry1
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlBucketBndry2
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlBucketBndry3
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlBucketBndry4
MIN-ACCESS read-only
DESCRIPTION
"The agent is not required to support a SET operation
to this object in the absence of adequate security."
OBJECT tn3270eRtCollCtlRowStatus
SYNTAX INTEGER {
active(1) -- subset of RowStatus
}
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the six
enumerated values for the RowStatus textual convention
need be supported, specifically: active(1)."
::= {tn3270eRtCompliances 1 }
-- Group definitions
tn3270eRtGroup OBJECT-GROUP
OBJECTS {
tn3270eRtCollCtlType,
tn3270eRtCollCtlSPeriod,
tn3270eRtCollCtlSPMult,
tn3270eRtCollCtlThreshHigh,
tn3270eRtCollCtlThreshLow,
tn3270eRtCollCtlIdleCount,
tn3270eRtCollCtlBucketBndry1,
tn3270eRtCollCtlBucketBndry2,
tn3270eRtCollCtlBucketBndry3,
tn3270eRtCollCtlBucketBndry4,
tn3270eRtCollCtlRowStatus,
tn3270eRtDataDiscontinuityTime,
tn3270eRtDataAvgRt,
tn3270eRtDataAvgIpRt,
tn3270eRtDataAvgCountTrans,
tn3270eRtDataIntTimeStamp,
tn3270eRtDataTotalRts,
tn3270eRtDataTotalIpRts,
tn3270eRtDataCountTrans,
tn3270eRtDataCountDrs,
tn3270eRtDataElapsRndTrpSq,
tn3270eRtDataElapsIpRtSq,
tn3270eRtDataBucket1Rts,
tn3270eRtDataBucket2Rts,
tn3270eRtDataBucket3Rts,
tn3270eRtDataBucket4Rts,
tn3270eRtDataBucket5Rts,
tn3270eRtDataRtMethod,
tn3270eRtSpinLock }
STATUS current
DESCRIPTION
"This group is mandatory for all implementations that
support the TN3270E-RT-MIB. "
::= { tn3270eRtGroups 1 }
tn3270eRtNotGroup NOTIFICATION-GROUP
NOTIFICATIONS {
tn3270eRtExceeded,
tn3270eRtOkay,
tn3270eRtCollStart,
tn3270eRtCollEnd
}
STATUS current
DESCRIPTION
"The notifications that must be supported when the
TN3270E-RT-MIB is implemented. "
::= { tn3270eRtGroups 2 }
END
6.0 Security Considerations
Certain management information defined in this MIB may be considered
sensitive in some network environments. Therefore, authentication of
received SNMP requests and controlled access to management
information SHOULD be employed in such environments. An
authentication protocol is defined in [12]. A protocol for access
control is defined in [15].
Several objects in this MIB allow write access or provide for row
creation. Allowing this support in a non-secure environment can have
a negative effect on network operations. It is RECOMMENDED that
implementers seriously consider whether set operations or row
creation SHOULD be allowed without providing, at a minimum,
authentication of request origin. It is RECOMMENDED that without
such support that the following objects be implemented as read-only:
o tn3270eRtCollCtlType
o tn3270eRtCollCtlSPeriod
o tn3270eRtCollCtlSPMult
o tn3270eRtCollCtlThreshHigh
o tn3270eRtCollCtlThreshLow
o tn3270eRtCollCtlIdleCount
o tn3270eRtCollCtlBucketBndry1
o tn3270eRtCollCtlBucketBndry2
o tn3270eRtCollCtlBucketBndry3
o tn3270eRtCollCtlBucketBndry4
o tn3270eRtCollCtlRowStatus
The administrative method to use to create and manage the
tn3270eRtCollCtlTable when SET support is not allowed is outside of
the scope of this memo.
7.0 Intellectual Property
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
8.0 Acknowledgments
This document is a product of the TN3270E Working Group. Special
thanks are due to Derek Bolton and Michael Boe of Cisco Systems for
their numerous comments and suggestions for improving the structure
of this MIB. Thanks also to Randy Presuhn of BMC Software for his
valuable review comments on several versions of the document.
9.0 References
[1] Harrington D., Presuhn, R. and B. Wijnen, "An Architecture for
Describing SNMP Management Frameworks", RFC 2271, January 1998.
[2] Rose, M. and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based Internets", STD 16, RFC
1155, May 1990.
[3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
RFC 1212, March 1991.
[4] Rose, M., "A Convention for Defining Traps for use with the
SNMP", RFC 1215, March 1991.
[5] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Structure
of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1902, January 1996.
[6] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Textual
Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1903, January 1996.
[7] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1904, January 1996.
[8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
Network Management Protocol", STD 15, RFC 1157, May 1990.
[9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901, January
1996.
[10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1906, January 1996.
[11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
Processing and Dispatching for the Simple Network Management
Protocol (SNMP)", RFC 2272, January 1998.
[12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
for version 3 of the Simple Network Management Protocol
(SNMPv3)", RFC 2274, January 1998.
[13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1905, January 1996.
[14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
2273, January 1998.
[15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
Control Model (VACM) for the Simple Network Management Protocol
(SNMP)", RFC 2275, January 1998.
[16] Postel, J. and J. Reynolds, "Telnet Protocol Specification", STD
8, RFC 854, May 1983.
[17] Postel, J. and J. Reynolds, "Telnet Timing Mark Option", STD 31,
RFC 860, May 1983.
[18] Rekhter, J., "Telnet 3270 Regime Option", RFC 1041, January
1988.
[19] Kelly, B., "TN3270 Enhancements", RFC 2355, June 1998.
[20] White, K. and R. Moore, "Base Definitions of Managed Objects for
TN3270E Using SMIv2", RFC 2561, April 1999.
[21] IBM, International Technical Support Centers, "Response Time
Data Gathering", GG24-3212-01, November 1990.
[22] Hovey, R. and S. Bradner, "The Organizations Involved in the
IETF Standards Process", BCP 11, RFC 2028, October 1996.
[23] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
10.0 Authors' Addresses
Kenneth D. White
Dept. BRQA/Bldg. 501/G114
IBM Corporation
P.O.Box 12195
3039 Cornwallis
Research Triangle Park, NC 27709, USA
EMail: kennethw@vnet.ibm.com
Robert Moore
Dept. BRQA/Bldg. 501/G114
IBM Corporation
P.O.Box 12195
3039 Cornwallis
Research Triangle Park, NC 27709, USA
Phone: +1-919-254-7507
EMail: remoore@us.ibm.com
11.0 Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
Comment about this RFC, ask questions, or add new information about this topic: