Patent application title: SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES
Inventors:
Michel G. Bergeron (Quebec, CA)
Michel G. Bergeron (Quebec, CA)
Marc Ouellette (Quebec, CA)
Paul H. Roy (Loretteville, CA)
Paul H. Roy (Loretteville, CA)
IPC8 Class: AC12Q168FI
USPC Class:
435 6
Class name: Chemistry: molecular biology and microbiology measuring or testing process involving enzymes or micro-organisms; composition or test strip therefore; processes of forming such composition or test strip involving nucleic acid
Publication date: 2009-02-26
Patent application number: 20090053703
Claims:
1. A method to simultaneously detect and identify the presence of
Salmonella typhimurium in a sample, in a sample by performing an assay,
comprising:simultaneously contacting a sample with a set of amplification
primers comprising a plurality of at least a first, second, and third
primer pair, wherein said first primer pair hybridizes solely to the
nucleic acids of Salmonella typhimurium, and wherein said second and
third primer pairs hybridize solely to target DNA of said second and
third target bacterial species, respectively, and are ubiquitous to at
least 80% to Salmonella typhimurium, and second and third target
bacterial species, respectively, wherein the plurality of primer pairs
are chosen to allow amplification under a single amplification
protocol;amplifying target nucleic acid from said sample under said
single amplification protocol; anddetecting the presence or amount of
amplified product(s) as an indication of the presence of Salmonella
typhimurium and said second and third target bacterial species in said
sample.Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001]This application is a continuation of U.S. patent application Ser. No. 10/121,120 to Bergeron et al., entitled "Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories," filed Apr. 11, 2002, which is a continuation of U.S. patent application Ser. No. 09/452,599, filed Dec. 1, 1999, now abandoned, which is a continuation of U.S. patent application Ser. No. 08/526,840, filed Sep. 11, 1995, now U.S. Pat. No. 6,001,564, which is a continuation-in-part of U.S. patent application Ser. No. 08/304,732, filed Sep. 12, 1994, now abandoned.
REFERENCE TO SEQUENCE LISTING
[0002]The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled GENOM.046CP1CC6.TXT, created Aug. 20, 2007, which is 115 KB in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
Classical Identification of Bacteria
[0003]Bacteria are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20E® system. Susceptibility testing of Gram negative bacilli has progressed to microdilution tests. Although the API and the microdilution systems are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to isolate and identify the bacteria from the specimen. Some faster detection methods with sophisticated and expensive apparatus have been developed. For example, the fastest identification system, the autoSCAN-Walk-Away System® identifies both Gram negative and Gram positive from isolated bacterial colonies in 2 hours and susceptibility patterns to antibiotics in only 7 hours. However, this system has an unacceptable margin of error, especially with bacterial species other than Enterobacteriaceae (York et al., 1992. J. Clin. Microbiol. 30:2903-2910). Nevertheless, even this fastest method requires primary isolation of the bacteria as a pure culture, a process which takes at least 18 hours if there is a pure culture or 2 to 3 days if there is a mixed culture.
Urine Specimens
[0004]A large proportion (40-50%) of specimens received in routine diagnostic microbiology laboratories for bacterial identification are urine specimens (Pezzlo, 1988, Clin. Microbiol. Rev. 1:268-280). Urinary tract infections (UTI) are extremely common and affect up to 20% of women and account for extensive morbidity and increased mortality among hospitalized patients (Johnson and Stamm, 1989; Ann. Intern. Med. 111:906-917). UTI are usually of bacterial etiology and require antimicrobial therapy. The Gram negative bacillus Escherichia coli is by far the most prevalent urinary pathogen and accounts for 50 to 60% of UTI (Pezzlo, 1988, op. cit.). The prevalence for bacterial pathogens isolated from urine specimens observed recently at the "Centre Hospitalier de l'Universit Laval (CHUL)" is given in Tables 1 and 2.
[0005]Conventional pathogen identification in urine specimens. The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. The gold standard is still the classical semi-quantitative plate culture method in which a calibrated loop of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial UTI is normally associated with a bacterial count of gtoreq.107 CFU/L in urine. However, infections with less than 107 CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, close to 80% of urine specimens tested are considered negative (<107 CFU/L; Table 3).
[0006]Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative results and a more efficient clinical investigation of the patient. Several rapid identification methods (Uriscreen®, UTIscreen®, Flash Track® DNA probes and others) were recently compared to slower standard biochemical methods which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and specificities as well as a high number of false negative and false positive results (Koening et al., 1992. J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992. J. Clin. Microbiol. 30:640-684).
[0007]Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics.
Any Clinical Specimens
[0008]As with urine specimen which was used here as an example, our probes and amplification primers are also applicable to any other clinical specimens. The DNA-based tests proposed in this invention are superior to standard methods currently used for routine diagnosis in terms of rapidity and accuracy. While a high percentage of urine specimens are negative, in many other clinical specimens more than 95% of cultures are negative (Table 4). These data further support the use of universal probes to screen out the negative clinical specimens. Clinical specimens from organisms other than humans (e.g. other primates, mammals, farm animals or live stocks) may also be used.
Towards the Development of Rapid DNA-Based Diagnostic
[0009]A rapid diagnostic test should have a significant impact on the management of infections. For the identification of pathogens and antibiotic resistance genes in clinical samples, DNA probe and DNA amplification technologies offer several advantages over conventional methods. There is no need for subculturing, hence the organism can be detected directly in clinical samples thereby reducing the costs and time associated with isolation of pathogens. DNA-based technologies have proven to be extremely useful for specific applications in the clinical microbiology laboratory. For example, kits for the detection of fastidious organisms based on the use of hybridization probes or DNA amplification for the direct detection of pathogens in clinical specimens are commercially available (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).
[0010]The present invention is an advantageous alternative to the conventional culture identification methods used in hospital clinical microbiology laboratories and in private clinics for routine diagnosis. Besides being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. biochemical properties). The originality of this invention is that genomic DNA fragments (size of at least 100 base pairs) specific for 12 species of commonly encountered bacterial pathogens were selected from genomic libraries or from data banks. Amplification primers or oligonucleotide probes (both less than 100 nucleotides in length) which are both derived from the sequence of species-specific DNA fragments identified by hybridization from genomic libraries or from selected data bank sequences are used as a basis to develop diagnostic tests. Oligonucleotide primers and probes for the detection of commonly encountered and clinically important bacterial resistance genes are also included. For example, Annexes I and II present a list of suitable oligonucleotide probes and PCR primers which were all derived from the species-specific DNA fragments selected from genomic libraries or from data bank sequences. It is clear to the individual skilled in the art that oligonucleotide sequences appropriate for the specific detection of the above bacterial species other than those listed in Annexes 1 and 2 may be derived from the species-specific fragments or from the selected data bank sequences. For example, the oligonucleotides may be shorter or longer than the ones we have chosen and may be selected anywhere else in the identified species-specific sequences or selected data bank sequences. Alternatively, the oligonucleotides may be designed for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of species-specific genomic DNA fragments from bacterial genomic DNA libraries and the selection of genomic DNA fragments from data bank sequences which are used as a source of species-specific and ubiquitous oligonucleotides. Although the selection of oligonucleotides suitable for diagnostic purposes from the sequence of the species-specific fragments or from the selected data bank sequences requires much effort it is quite possible for the individual skilled in the art to derive from our fragments or selected data bank sequences suitable oligonucleotides which are different from the ones we have selected and tested as examples (Annexes I and II).
[0011]Others have developed DNA-based tests for the detection and identification of some of the bacterial pathogens for which we have identified species-specific sequences (PCT patent application Serial No. WO 93/03186). However, their strategy was based on the amplification of the highly conserved 16S rRNA gene followed by hybridization with internal species-specific oligonucleotides. The strategy from this invention is much simpler and more rapid because it allows the direct amplification of species-specific targets using oligonucleotides derived from the species-specific bacterial genomic DNA fragments.
[0012]Since a high percentage of clinical specimens are negative, oligonucleotide primers and probes were selected from the highly conserved 16S or 23S rRNA genes to detect all bacterial pathogens possibly encountered in clinical specimens in order to determine whether a clinical specimen is infected or not. This strategy allows rapid screening out of the numerous negative clinical specimens submitted for bacteriological testing.
[0013]We are also developing other DNA-based tests, to be performed simultaneously with bacterial identification, to determine rapidly the putative bacterial susceptibility to antibiotics by targeting commonly encountered and clinically relevant bacterial resistance genes. Although the sequences from the selected antibiotic resistance genes are available and have been used to develop DNA-based tests for their detection (Ehrlich and Greenberg, 1994. PCR-based Diagnostics in Infectious Diseases, Blackwell Scientific Publications, Boston, Mass.; Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.), our approach is innovative as it represents major improvements over current "gold standard" diagnostic methods based on culture of the bacteria because it allows the rapid identification of the presence of a specific bacterial pathogen and evaluation of its susceptibility to antibiotics directly from the clinical specimens within one hour.
[0014]We believe that the rapid and simple diagnostic tests not based on cultivation of the bacteria that we are developing will gradually replace the slow conventional bacterial identification methods presently used in hospital clinical microbiology laboratories and in private clinics. In our opinion, these rapid DNA-based diagnostic tests for severe and common bacterial pathogens and antibiotic resistance will (i) save lives by optimizing treatment, (ii) diminish antibiotic resistance by reducing the use of broad spectrum antibiotics and (iii) decrease overall health costs by preventing or shortening hospitalizations.
SUMMARY OF THE INVENTION
[0015]In accordance with the present invention, there is provided sequence from genomic DNA fragments (size of at least 100 base pairs and all described in the sequence listing) selected either by hybridization from genomic libraries or from data banks and which are specific for the detection of commonly encountered bacterial pathogens (i.e. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis) in clinical specimens. These bacterial species are associated with approximately 90% of urinary tract infections and with a high percentage of other severe infections including septicemia, meningitis, pneumonia, intraabdominal infections, skin infections and many other severe respiratory tract infections. Overall, the above bacterial species may account for up to 80% of bacterial pathogens isolated in routine microbiology laboratories.
[0016]Synthetic oligonucleotides for hybridization (probes) or DNA amplification (primers) were derived from the above species-specific DNA fragments (ranging in sizes from 0.25 to 5.0 kilobase pairs (kbp)) or from selected data bank sequences (GenBank and EMBL). Bacterial species for which some of the oligonucleotide probes and amplification primers were derived from selected data bank sequences are Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. The person skilled in the art understands that the important innovation in this invention is the identification of the species-specific DNA fragments selected either from bacterial genomic libraries by hybridization or from data bank sequences. The selection of oligonucleotides from these fragments suitable for diagnostic purposes is also innovative. Specific and ubiquitous oligonucleotides different from the ones tested in the practice are considered as embodiments of the present invention.
[0017]The development of hybridization (with either fragment or oligonucleotide probes) or of DNA amplification protocols for the detection of pathogens from clinical specimens renders possible a very rapid bacterial identification. This will greatly reduce the time currently required for the identification of pathogens in the clinical laboratory since these technologies can be applied for bacterial detection and identification directly from clinical specimens with minimum pretreatment of any biological specimens to release bacterial DNA. In addition to being 100% specific, probes and amplification primers allow identification of the bacterial species directly from clinical specimens or, alternatively, from an isolated colony. DNA amplification assays have the added advantages of being faster and more sensitive than hybridization assays, since they allow rapid and exponential in vitro replication of the target segment of DNA from the bacterial genome. Universal probes and amplification primers selected from the 16S or 23S rRNA genes highly conserved among bacteria, which permit the detection of any bacterial pathogens, will serve as a procedure to screen out the numerous negative clinical specimens received in diagnostic laboratories. The use of oligonucleotide probes or primers complementary to characterized bacterial genes encoding resistance to antibiotics to identify commonly encountered and clinically important resistance genes is also under the scope of this invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Development of Species-Specific DNA Probes
[0018]DNA fragment probes were developed for the following bacterial species: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Haemophilus influenzae and Moraxella catarrhalis. (For Enterococcus faecalis and Streptococcus pyogenes, oligonucleotide sequences were exclusively derived from selected data bank sequences). These species-specific fragments were selected from bacterial genomic libraries by hybridization to DNA from a variety of Gram positive and Gram negative bacterial species (Table 5).
[0019]The chromosomal DNA from each bacterial species for which probes were seeked was isolated using standard methods. DNA was digested with a frequently cutting restriction enzyme such as Sau3AI and then ligated into the bacterial plasmid vector pGEM3Zf (Promega) linearized by appropriate restriction endonuclease digestion. Recombinant plasmids were then used to transform competent E. coli strain DH5α thereby yielding a genomic library. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments of target bacteria ranging in size from 0.25 to 5.0 kilobase pairs (kbp) were cut out from the vector by digestion of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in low melting point agarose gels. Each of the purified fragments of bacterial genomic DNA was then used as a probe for specificity tests.
[0020]For each given species, the gel-purified restriction fragments of unknown coding potential were labeled with the radioactive nucleotide .sup.α32P(dATP) which was incorporated into the DNA fragment by the random priming labeling reaction. Non-radioactive modified nucleotides could also be incorporated into the DNA by this method to serve as a label.
[0021]Each DNA fragment probe (i.e. a segment of bacterial genomic DNA of at least 100 bp in length cut out from clones randomly selected from the genomic library) was then tested for its specificity by hybridization to DNAs from a variety of bacterial species (Table 5). The double-stranded labeled DNA probe was heat-denatured to yield labeled single-stranded DNA which could then hybridize to any single-stranded target DNA fixed onto a solid support or in solution. The target DNAs consisted of total cellular DNA from an array of bacterial species found in clinical samples (Table 5). Each target DNA was released from the bacterial cells and denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in solution. The fixed single-stranded target DNAs were then hybridized with the single-stranded probe. Prehybridization, hybridization and post-hybridization conditions were as follows: (i) Prehybridization; in 1 M NaCl+10% dextran sulfate+1% SDS (sodium dodecyl sulfate)+1μg/ml salmon sperm DNA at 650° C. for 15 min. (ii) Hybridization; in fresh pre-hybridization solution containing the labeled probe at 650° C. overnight. (iii) Post-hybridization; washes twice in 3×SSC containing 1% SDS (1×SSC is 0.15M NaCl, 0.015M NaCitrate) and twice in 0.1×SSC containing 0.1% SDS; all washes were at 650° C. for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs. Species-specific DNA fragments selected from various bacterial genomic libraries ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria performed as described above. All of the bacterial species tested (66 species listed in Table 5) were likely to be pathogens associated with common infections or potential contaminants which can be isolated from clinical specimens. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. DNA fragment probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most isolates of the target species) by hybridization to bacterial DNAs from approximately 10 to 80 clinical isolates of the species of interest (Table 6). The DNAs were denatured, fixed onto nylon membranes and hybridized as described above.
Sequencing of the Species-Specific Fragment Probes
[0022]The nucleotide sequence of the totality or of a portion of the species-specific DNA fragments isolated (Table 6) was determined using the dideoxynucleotide termination sequencing method which was performed using Sequenase® (USB Biochemicals) or T7 DNA polymerase (Pharmacia). These nucleotide sequences are shown in the sequence listing. Alternatively, sequences selected from data banks (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes for Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. For this strategy, an array of suitable oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from data banks was tested for their specificity and ubiquity in PCR and hybridization assays as described later. It is important to note that the data bank sequences were selected based on their potential of being species-specific according to available sequence information. Only data bank sequences from which species-specific oligonucleotides could be derived are included in this invention.
[0023]Oligonucleotide probes and amplification primers derived from species-specific fragments selected from the genomic libraries or from data bank sequences were synthesized using an automated DNA synthesizer (Millipore). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (e.g. Genetics Computer Group (GCG) and Oligo® 4.0 (National Biosciences)). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide, a high proportion of G or C residues at the 3' end and a 3'-terminal T residue (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).
Hybridization with Oligonucleotide Probes
[0024]In hybridization experiments, oligonucleotides (size less than 100 nucleotides) have some advantages over DNA fragment probes for the detection of bacteria such as ease of preparation in large quantities, consistency in results from batch to batch and chemical stability. Briefly, for the hybridizations, oligonucleotides were 5' end-labeled with the radionucleotide .sup.γ32P(ATP) using T4 polynucleotide kinase (Pharmacia). The unincorporated radionucleotide was removed by passing the labeled single-stranded oligonucleotide through a Sephadex G50 column. Alternatively, oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled in the art that labeling means other than the three above labels may be used.
[0025]The target DNA was denatured, fixed onto a solid support and hybridized as previously described for the DNA fragment probes. Conditions for pre-hybridization and hybridization were as described earlier. Post-hybridization washing conditions were as follows: twice in 3×SSC containing 1% SDS, twice in 2×SSC containing 1% SDS and twice in 1×SSC containing 1% SDS (all of these washes were at 65° C. for 15 min), and a final wash in 0.1×SSC containing 1% SDS at 25° C. for 15 min. For probes labeled with radioactive labels the detection of hybrids was by autoradiography as described earlier. For non-radioactive labels detection may be calorimetric or by chemiluminescence.
[0026]The oligonucleotide probes may be derived from either strand of the duplex DNA. The probes may consist of the bases A, G, C, or T or analogs. The probes may be of any suitable length and may be selected anywhere within the species-specific genomic DNA fragments selected from the genomic libraries or from data bank sequences.
DNA Amplification
[0027]For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived either from the sequenced species-specific DNA fragments or from data bank sequences or, alternatively, were shortened versions of oligonucleotide probes. Prior to synthesis, the potential primer pairs were analyzed by using the program Oligo® 4.0 (National Biosciences) to verify that they are likely candidates for PCR amplifications.
[0028]During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the denatured double-stranded target DNA from the bacterial genome are used to amplify exponentially in vitro the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). Briefly, the PCR protocols were as follows. Clinical specimens or bacterial colonies were added directly to the 50 μL PCR reaction mixtures containing 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl2, 0.4 μM of each of the two primers, 200 μM of each of the four dNTPs and 1.25 Units of Taq DNA polymerase (Perkin Elmer). PCR reactions were then subjected to thermal cycling (3 min at 95° C. followed by 30 cycles of 1 second at 95° C. and 1 second at 55° C.) using a Perkin Elmer 480® thermal cycler and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after amplification (e.g. TaqMan® system from Perkin Elmer or Amplisensor® from Biotronics) or liquid hybridization with an oligonucleotide probe binding to internal sequences of the specific amplification product. These novel probes can be generated from our species-specific fragment probes. Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are, very rapid and quantitative and can be automated.
[0029]To assure PCR efficiency, glycerol or dimethyl sulfoxide (DMSO) or other related solvents, can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of target with a high GC content or with strong secondary structures. The concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v.backslash.v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and the MgCl2 are 0.1-1.0 μM and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods see examples 7 and 8.
[0030]The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-based amplification systems (TAS), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification methods or any other procedures which may be used to increase rapidity and sensitivity of the tests. Any oligonucleotides suitable for the amplification of nucleic acid by approaches other than PCR and derived from the species-specific fragments and from selected antibiotic resistance gene sequences included in this document are also under the scope of this invention.
Specificity and Ubiquity Tests for Oligonucleotide Probes and Primers
[0031]The specificity of oligonucleotide probes, derived either from the sequenced species-specific fragments or from data bank sequences, was tested by hybridization to DNAs from the array of bacterial species listed in Table 5 as previously described. Oligonucleotides found to be specific were subsequently tested for their ubiquity by hybridization to bacterial DNAs from approximately 80 isolates of the target species as described for fragment probes. Probes were considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates. Results for specificity and ubiquity tests with the oligonucleotide probes are summarized in Table 6. The specificity and ubiquity of the amplification primer pairs were tested directly from cultures (see example 7) of the same bacterial strains. For specificity and ubiquity tests, PCR assays were performed directly from bacterial colonies of approximately 80 isolates of the target species. Results are summarized in Table 7. All specific and ubiquitous oligonucleotide probes and amplification primers for each of the 12 bacterial species investigated are listed in Annexes I and II, respectively. Divergence in the sequenced DNA fragments can occur and, insofar as the divergence of these sequences or a part thereof does not affect the specificity of the probes or amplification primers, variant bacterial DNA is under the scope of this invention.
Universal Bacterial Detection
[0032]In the routine microbiology laboratory a high percentage of clinical specimens sent for bacterial identification is negative (Table 4). For example, over a 2 year period, around 80% of urine specimens received by the laboratory at the "Centre Hospitalier de l'Universite Laval (CHUL)" were negative (i.e. <107 CFU/L) (Table 3). Testing clinical samples with universal probes or universal amplification primers to detect the presence of bacteria prior to specific identification and screen out the numerous negative specimens is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several oligonucleotides and amplification primers were therefore synthesized from highly conserved portions of bacterial 16S or 23S ribosomal RNA gene sequences available in data banks (Annexes III and IV). In hybridization tests, a pool of seven oligonucleotides (Annex I; Table 6) hybridized strongly to DNA from all bacterial species listed in Table 5. This pool of universal probes labeled with radionucleotides or with any other modified nucleotides is consequently very useful for detection of bacteria in urine samples with a sensitivity range of ≧107 CFU/L. These probes can also be applied for bacterial detection in other clinical samples.
[0033]Amplification primers also derived from the sequence of highly conserved ribosomal RNA genes were used as an alternative strategy for universal bacterial detection directly from clinical specimens (Annex IV; Table 7). The DNA amplification strategy was developed to increase the sensitivity and the rapidity of the test. This amplification test was ubiquitous since it specifically amplified DNA from 23 different bacterial species encountered in clinical specimens.
[0034]Well-conserved bacterial genes other than ribosomal RNA genes could also be good candidates for universal bacterial detection directly from clinical specimens. Such genes may be associated with processes essential for bacterial survival (e.g. protein synthesis, DNA synthesis, cell division or DNA repair) and could therefore be highly conserved during evolution. We are working on these candidate genes to develop new rapid tests for the universal detection of bacteria directly from clinical specimens.
Antibiotic Resistance Genes
[0035]Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide the clinicians, within one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with DNA-based tests for specific bacterial detection, the clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resistance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available from data banks, our strategy is to use the sequence from a portion or from the entire gene to design specific oligonucleotides which will be used as a basis for the development of rapid DNA-based tests. The sequence from the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in the sequence listing. Table 8 summarizes some characteristics of the selected antibiotic resistance genes.
EXAMPLES
[0036]The following examples are intended to be illustrative of the various methods and compounds of the invention.
Example 1
[0037]Isolation and cloning of fragments. Genomic DNAs from Escherichia coli strain ATCC 25922, Klebsiella pneumoniae strain CK2, Pseudomonas aeruginosa strain ATCC 27853, Proteus mirabilis strain ATCC 35657, Streptococcus pneumoniae strain ATCC 27336, Staphylococcus aureus strain ATCC 25923, Staphylococcus epidermidis strain ATCC 12228, Staphylococcus saprophyticus strain ATCC 15305, Haemophilus influenzae reference strain Rd and Moraxella catarrhalis strain ATCC 53879 were prepared using standard procedures. It is understood that the bacterial genomic DNA may have been isolated from strains other than the ones mentioned above. (For Enterococcus faecalis and Streptococcus pyogenes oligonucleotide sequences were derived exclusively from data banks). Each DNA was digested with a restriction enzyme which frequently cuts DNA such as Sau3AI. The resulting DNA fragments were ligated into a plasmid vector (pGEM3Zf) to create recombinant plasmids and transformed into competent E. coli cells (DH5α). It is understood that the vectors and corresponding competent cells should not be limited to the ones herein above specifically exemplified. The objective of obtaining recombinant plasmids and transformed cells is to provide an easily reproducible source of DNA fragments useful as probes. Therefore, insofar as the inserted fragments are specific and selective for the target bacterial DNA, any recombinant plasmids and corresponding transformed host cells are under the scope of this invention. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments from target bacteria ranging in size from 0.25 to 5.0 kbp were cut out from the vector by digestion of the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in a low melting point agarose gel. Each of the purified fragments was then used for specificity tests.
[0038]Labeling of DNA fragment probes. The label used was .sup.α32P(dATP), a radioactive nucleotide which can be incorporated enzymatically into a double-stranded DNA molecule. The fragment of interest is first denatured by heating at 95° C. for 5 min, then a mixture of random primers is allowed to anneal to the strands of the fragments. These primers, once annealed, provide a starting point for synthesis of DNA. DNA polymerase, usually the Klenow fragment, is provided along with the four nucleotides, one of which is radioactive. When the reaction is terminated, the mixture of new DNA molecules is once again denatured to provide radioactive single-stranded DNA molecules (i.e. the probe). As mentioned earlier, other modified nucleotides may be used to label the probes.
[0039]Specificity and ubiquity tests for the DNA fragment probes. Species-specific DNA fragments ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria. Samples of whole cell DNA for each bacterial strain listed in Table 5 were transferred onto a nylon membrane using a dot blot apparatus, washed and denatured before being irreversibly fixed. Hybridization conditions were as described earlier. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. Labeled DNA fragments hybridizing specifically only to target bacterial species (i.e. specific) were then tested for their ubiquity by hybridization to DNAs from approximately 10 to 80 isolates of the species of interest as described earlier. The conditions for pre-hybridization, hybridization and post-hybridization washes were as described earlier. After autoradiography (or other detection means appropriate for the non-radioactive label used), the specificity of each individual probe can be determined. Each probe found to be specific (i.e. hybridizing only to the DNA from the bacterial species from which it was isolated) and ubiquitous (i.e. hybridizing to most isolates of the target species) was kept for further experimentations.
Example 2
[0040]Same as example 1 except that testing of the strains is by colony hybridization. The bacterial strains were inoculated onto a nylon membrane placed on nutrient agar. The membranes were incubated at 37° C. for two hours and then bacterial lysis and DNA denaturation were carried out according to standard procedures. DNA hybridization was performed as described earlier.
Example 3
[0041]Same as example 1 except that bacteria were detected directly from clinical samples. Any biological samples were loaded directly onto a dot blot apparatus and cells were lysed in situ for bacterial detection. Blood samples should be heparizined in order to avoid coagulation interfering with their convenient loading on a dot blot apparatus.
Example 4
[0042]Nucleotide sequencing of DNA fragments. The nucleotide sequence of the totality or a portion of each fragment found to be specific and ubiquitous (Example 1) was determined using the dideoxynucleotide termination sequencing method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA. 74:5463-5467). These DNA sequences are shown in the sequence listing. Oligonucleotide probes and amplification primers were selected from these nucleotide sequences, or alternatively, from selected data banks sequences and were then synthesized on an automated Biosearch synthesizer (Millipore®) using phosphoramidite chemistry.
[0043]Labeling of oligonucleotides. Each oligonucleotide was 5' end-labeled with .sup.γ32P-ATP by the T4 polynucleotide kinase (Pharmacia) as described earlier. The label could also be non-radioactive.
[0044]Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by hybridization to DNAs from a variety of Gram positive and Gram negative bacterial species as described earlier. Species-specific probes were those hybridizing only to DNA from the bacterial species from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests as follows.
[0045]Ubiquity test for oligonucleotide probes. Specific oligonucleotide probes were then used in ubiquity tests with approximately 80 strains of the target species. Chromosomal DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes as described for specificity tests. The batteries of approximately 80 isolates constructed for each target species contain reference ATCC strains as well as a variety of clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species. Examples of specific and ubiquitous oligonucleotide probes are listed in Annex I.
Example 5
[0046]Same as example 4 except that a pool of specific oligonucleotide probes is used for bacterial identification (i) to increase sensitivity and assure 100% ubiquity or (ii) to identify simultaneously more than one bacterial species. Bacterial identification could be done from isolated colonies or directly from clinical specimens
Example 6
[0047]PCR amplification. The technique of PCR was used to increase sensitivity and rapidity of the tests. The PCR primers used were often shorter derivatives of the extensive sets of oligonucleotides previously developed for hybridization assays (Table 6). The sets of primers were tested in PCR assays performed directly from a bacterial colony or from a bacterial suspension (see Example 7) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in annex II.
[0048]Specificity and ubiquity tests for amplification primers. The specificity of all selected PCR primer pairs was tested against the battery of Gram negative and Gram positive bacteria used to test the oligonucleotide probes (Table 5). Primer pairs found specific for each species were then tested for their ubiquity to ensure that each set of primers could amplify at least 80% of DNAs from a battery of approximately 80 isolates of the target species. The batteries of isolates constructed for each species contain reference ATCC strains and various clinical isolates representative of the clinical diversity for each species.
[0049]Standard precautions to avoid false positive PCR results should be taken. Methods to inactivate PCR amplification products such as the inactivation by uracil-N-glycosylase may be used to control PCR carryover.
Example 7
[0050]Amplification directly from a bacterial colony or suspension. PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to 1.5×108 bacteria/mL). In the case of direct amplification from a colony, a portion of the colony was transferred directly to a 50 μL PCR reaction mixture (containing 50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl2, 0.4 μM of each of the two primers, 200 μM of each of the four dNTPs and 1.25 Unit of Taq DNA polymerase (Perkin Elmer)) using a plastic rod. For the bacterial suspension, 4 μL of the cell suspension was added to 46 μL of the same PCR reaction mixture. For both strategies, the reaction mixture was overlaid with 50 μL of mineral oil and PCR amplifications were carried out using an initial denaturation step of 3 min. at 95° C. followed by 30 cycles consisting of a 1 second denaturation step at 95° C. and of a 1 second annealing step at 55° C. in a Perkin Elmer 480® thermal cycler. PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 2.5 μg/mL of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.
[0051]Alternatively, amplification from bacterial cultures was performed as described above but using a "hot start" protocol. In that case, an initial reaction mixture containing the target DNA, primers and dNTPs was heated at 85° C. prior to the addition of the other components of the PCR reaction mixture. The final concentration of all reagents was as described above. Subsequently, the PCR reactions were submitted to thermal cycling and analysis as described above.
Example 8
[0052]Amplification directly from clinical specimens. For amplification from urine specimens, 4μL of undiluted or diluted (1:10) urine was added directly to 46 μL of the above PCR reaction mixture and amplified as described earlier.
[0053]To improve bacterial cell lysis and eliminate the PCR inhibitory effects of clinical specimens, samples were routinely diluted in lysis buffer containing detergent(s). Subsequently, the lysate was added directly to the PCR reaction mixture. Heat treatments of the lysates, prior to DNA amplification, using the thermocycler or a microwave oven could also be performed to increase the efficiency of cell lysis.
[0054]Our strategy is to develop rapid and simple protocols to eliminate PCR inhibitory effects of clinical specimens and lyse bacterial cells to perform DNA amplification directly from a variety of biological samples. PCR has the advantage of being compatible with crude DNA preparations. For example, blood, cerebrospinal fluid and sera may be used directly in PCR assays after a brief heat treatment. We intend to use such rapid and simple strategies to develop fast protocols for DNA amplification from a variety of clinical specimens.
Example 9
[0055]Detection of antibiotic resistance genes. The presence of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described in previous sections. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antibiotic resistance gene sequences. These tests can be performed either directly from clinical specimens or from a bacterial colony and should complement diagnostic tests for specific bacterial identification.
Example 10
[0056]Same as examples 7 and 8 except that assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to (i) reach an ubiquity of 100% for the specific target pathogen or (ii) to detect simultaneously several species of bacterial pathogens.
[0057]For example, the detection of Escherichia coli requires three pairs of PCR primers to assure a ubiquity of 100%. Therefore, a multiplex PCR assay (using the "hot-start" protocol (Example 7)) with those three primer pairs was developed. This strategy was also used for the other bacterial pathogens for which more than one primer pair was required to reach a ubiquity of 100%.
[0058]Multiplex PCR assays could also be used to (i) detect simultaneously several bacterial species or, alternatively, (ii) to simultaneously identify the bacterial pathogen and detect specific antibiotic resistance genes either directly from a clinical specimen or from a bacterial colony.
[0059]For these applications, amplicon detection methods should be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes. Another useful strategy for this purpose would be detection using a variety of fluorochromes emitting at different wavelengths which are each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorochrome (e.g. TaqMan®, Perkin Elmer).
Example 11
[0060]Detection of amplification Products. The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 7) may be used for the revelation of amplification products. Such methods may be based on the detection of fluorescence after amplification (e.g. Amplisensor®, Biotronics; TaqMan®) or other labels such as biotin (SHARP Signal® system, Digene Diagnostics). These methods are quantitative and easily automated. One of the amplification primers or an internal oligonucleotide probe specific to the amplicon(s) derived from the species-specific fragment probes is coupled with the fluorochrome or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are rapid and flexible as fluorochromes emitting different wavelengths are available (Perkin Elmer).
Example 12
[0061]Species-specific, universal and antibiotic resistance gene amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-based amplification systems (TAS), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) or any other methods to increase the sensitivity of the test. Amplifications can be performed from an isolated bacterial colony or directly from clinical specimens. The scope of this invention is therefore not limited to the use of PCR but rather includes the use of any procedures to specifically identify bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.
Example 13
[0062]A test kit would contain sets of probes specific for each bacterium as well as a set of universal probes. The kit is provided in the form of test components, consisting of the set of universal probes labeled with non-radioactive labels as well as labeled specific probes for the detection of each bacterium of interest in specific clinical samples. The kit will also include test reagents necessary to perform the pre-hybridization, hybridization, washing steps and hybrid detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included. Of course, the kit will include standard samples to be used as negative and positive controls for each hybridization test.
[0063]Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:
[0064]A kit for the universal detection of bacterial pathogens from most clinical specimens which contains sets of probes specific for highly conserved regions of the bacterial genomes.
[0065]A kit for the detection of bacterial pathogens retrieved from urine samples, which contains eight specific test components (sets of probes for the detection of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Staphylococcus aureus and Staphylococcus epidermidis).
[0066]A kit for the detection of respiratory pathogens which contains seven specific test components (sets of probes for detecting Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pyogenes and Staphylococcus aureus).
[0067]A kit for the detection of pathogens retrieved from blood samples, which contains eleven specific test components (sets of probes for the detection of Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Staphylococcus epidermidis).
[0068]A kit for the detection of pathogens causing meningitis, which contains four specific test components (sets of probes for the detection of Haemophilus influenzae, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa).
[0069]A kit for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 19 following genes associated with bacterial resistance: blatem, blarob, blashv, aadB, aacC1, aacC2, aacC3, aacA4, mecA, vanA, vanH, vanX, satA, aacA-aphD, vat, vga, msrA, sul and int.
[0070]Other kits adapted for the detection of pathogens from skin, abdominal wound or any other clinically relevant kits will be developed.
Example 14
[0071]Same as example 13 except that the test kits contain all reagents and controls to perform DNA amplification assays. Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from a bacterial colony. Components required for universal bacterial detection, bacterial identification and antibiotic resistance genes detection will be included.
[0072]Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will be coated with the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for bacterial identification and antibiotic resistance gene detection will be included in kits for testing directly from colonies as well as in kits for testing directly from clinical specimens.
[0073]The kits will be adapted for use with each type of specimen as described in example 13 for hybridization-based diagnostic kits.
Example 15
[0074]It is understood that the use of the probes and amplification primers described in this invention for bacterial detection and identification is not limited to clinical microbiology applications. In fact, we feel that other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, pharmaceutical products or other products requiring microbiological control. These tests could also be applied to detect and identify bacteria in biological samples from organisms other than humans (e.g. other primates, mammals, farm animals and live stocks). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological studies.
TABLE-US-00001 TABLE 1 Distribution of urinary isolates from positive urine samples (≧107 CFU/L) at the Centre Hospitalier de l'Universite Laval (CHUL) for the 1992-1994 period % of isolates November 1992 April 1993 July 1993 January 1994 Organisms n = 267a n = 265 n = 238 n = 281 Escherichia coli 53.2 51.7 53.8 54.1 Enterococcus faecalis 13.8 12.4 11.7 11.4 Klebsiella pneumoniae 6.4 6.4 5.5 5.3 Staphylococcus epidermidis 7.1 7.9 3.0 6.4 Proteus mirabilis 2.6 3.4 3.8 2.5 Pseudomonas aeruginosa 3.7 3.0 5.0 2.9 Staphylococcus saprophyticus 3.0 1.9 5.4 1.4 Othersb 10.2 13.3 11.8 16.0 an = total number of isolates for the indicated month bSee Table 2
TABLE-US-00002 TABLE 2 Distribution of uncommonaurinary isolates from positive urine samples (≧107 CFU/L) at the Centre Hospitalier de l'Universite Laval (CHUL) for the 1992-1994 period % of isolates November January Organisms 1992 April 1993 July 1993 1994 Staphylococcus aureus 0.4 1.1 1.3 1.4 Staphylococcus spp. 2.2 4.9 1.7 6.0 Micrococcus spp. 0.0 0.0 0.4 0.7 Enterococcus faecium 0.4 0.4 1.3 1.4 Citrobacter spp. 1.4 0.8 0.4 0.7 Enterobacter spp. 1.5 1.1 1.3 1.4 Klebsiella oxytoca 1.1 1.5 2.5 1.8 Serratia spp. 0.8 0.0 0.5 0.0 Proteus spp. 0.4 0.4 0.0 1.1 Moganella and Providencia 0.4 0.8 0.4 0.0 Hafania alvei 0.8 0.0 0.0 0.0 NFBb (Stenotrophomonas, 0.0 0.4 1.3 1.1 Acinetobacter Candida spp. 0.8 1.9 0.7 0.4 aUncommon urinary isolates are those identified as "Others" in Table 1. bNFB: non-fermentative bacilli
TABLE-US-00003 TABLE 3 Distribution of positivea (bacterial count ≧107 CFU/L) and negative samples (bacterial count ≧107 CFU/L) urine specimens tested at the Centre Hospitalier de l'Universite Laval (CHUL) for the 1992-1994 period Number of isolates November 1992 April 1993 July 1993 January 1994 Organisms n = 267a n = 265 n = 238 n = 281 received 53.2 51.7 53.8 54.1 positive 13.8 12.4 11.7 11.4 negative 6.4 6.4 5.5 5.3 an = total number of isolates for the indicated month
TABLE-US-00004 TABLE 4 Distribution of positive and negative clinical specimens tested in the Microbiology Laboratory of the CHUL No. of % of samples positive % of negative Clinical Specimensa tested specimens specimens Urine 17,981 19.4 80.6 Haemoclulture/marrow 10.010 6.9 93.1 Sputum 1,266 68.4 31.6 Superficial pus 1,136 72.3 27.7 Cerebrospinal fluid 553 1.0 99.0 Synovial fluid-articular 523 2.7 97.3 Bronch./Trach./Amyg/Throat 502 56.6 43.4 Deep pus 473 56.8 43.2 Ears 289 47.1 52.9 Pleural and pericardial fluid 132 1.0 99.0 Peritonial fluid 101 28.6 71.4 aSpecimens tested from February 1994 to January 1995
TABLE-US-00005 TABLE 5 Bacterial Species (66) used for testing the specificity of DNA fragment probes, oligonucleotides probes and PCR primers Number Number of of Bacterial species strains Bacterial species strains Gram negative: tested Gram positive: tested Proteus mirabilis 5 Streptococcus pneumoniae 7 Klebsiella pneumoniae 5 Streptococcus salivarius 2 Pseudomonas aeruginosa 5 Streptococcus viridans 2 Escherichia coli 5 Streptococcus pyogenes 2 Moraxella catarrhalis 5 Staphylococcus aureus 2 Proteus vulgaris 2 Staphylococcus epidermidis 2 Morganella morganii 2 Staphylococcus 5 saprophyticus Enterobater cloacae 2 Micrococcus species 2 Providencia stuartii 1 Corynebacterium species 2 Providencia spp. 1 Streptococcus group B 2 Enterobacter 2 Staphylococcus simulans 2 agglomerans Providencia rettgeri 2 Staphylococcus ludgunesis 1 Neisseria mucosa 1 Staphylococcus capitis 2 Providencia alcalifaciens 1 Staphylococcus 2 haemolyticus Providencia rustigianii 1 Staphylococcus hominis 2 Burkholderia cepacia 2 Enterococcus faecalis 2 Enterobacter aerogenes 2 Enterococcus faecium 1 Stenotrophomonas 2 Staphylococcus warneri 1 maltophilia Enterococcus durans 1 Pseudomonas 1 Streptococcus bovis 1 fluorescens Comamonas acidovorans 2 Diphteriods 2 Pseudomonas putida 2 Lactobacillus acidophilus 1 Haemophilus influenzae 5 Haemophilus 2 parainfluenzae Bordetella pertussis 2 Haemophilus 2 parahaemolyticus Haemophilus aegyptius 2 Kingella indologenes 1 Moraxella atlantae 1 Neisseria cavaie 1 Neisseria subflava 1 Moraxella urethralis 1 Shigella sonnei 1 Shigella flexneri 1 Klebsiella oxytoca 2 Serratia marcescens 2 Salmonella typhimurium 1 Yersinia enterocolitica 1 Acinetobacter 1 calcoaceticus Acinetobacter lwoffi 1 Haftnia alvei 2 Citrobacter diversus 1 Citrobacter freundii 1 Salmonella species 1
TABLE-US-00006 TABLE 6 Species-specific DNA fragment and oligonucleotide probes for hybridization Number of Number of fragment probes oligonucleotide probes Organisms Tested Specific Ubiquitous Synthesized Specific Ubiquitous E. colid -- -- -- 20 12 9f E. coli 14 2 .sup. 2e -- -- -- K. pneumoniaed -- -- -- 15 1 1 K. pneumoniae 33 3 3 18 12 8 P. mirabilisd -- -- -- 3 3 2 P. mirabilis 14 3 .sup. 3e 15 8 7 P. aeruginosad -- -- -- 26 13 9 P. aeruginosa 6 2 .sup. 2e 6 0 0 S. saprophyticus 7 4 4 20 9 7 H. influenzaed -- -- -- 16 2 2 H. influenzae 1 1 1 20 1 1 S. pneumoniaed -- -- -- 6 1 1 M. catarrhalis 2 2 2 9 8 8 S. epidermidis 62 1 1 -- -- -- S. aureus 30 1 1 -- -- -- Universal probesd -- -- -- 7 -- 7g aNo DNA fragment or oligonucleotide probes were tested for E. faecalis and S. pyogenes. bSizes of DNA fragments range from 0.25 to 5.0 kbp cA specific probe was considered ubiquitous when at least 80% of isolates of the target species (approximately 80 isolates) were recognized by each specific probe. When 2 or more probes are combined, 100% of the isolates are recognized. dThese sequences were selected from data banks. eUbiquity tested with approximately 10 isolates of the target species fA majority of probes (8/9) do not discriminate E. coli and Shigella spp. gUbiquity testes with a pool of the 7 probes detected all 66 bacterial species listed in Table 5.
TABLE-US-00007 TABLE 7 PCR amplification for bacterial pathogens commonly encountered in urine, sputum, blood, cerebrospinal fluid and other specimens Primer pair DNA amplification #(SEQ ID Amplicon from from Organism NO:) size (bp) Ubiquityb coloniesc specimensd E. coli 1e (55-56) 107 75/80 + + 2e (46-47) 297 77/80 + + 3 (42-43) 102 78/80 + + 4 (131-132) 134 73/80 + + 1 + 2 + 3 + 4 -- 80/80 + + E. faecalis 1e (38-39) 200 71/80 + + 2e (40-41) 121 79/80 + + 1 + 2 -- 80/80 + + K. pneumoniae 1 (67-68) 198 76/80 + + 2 (61-62) 143 67/80 + + 3h (135-136) 148 78/80 + N.T.i 4 (137-138) 116 69/80 + N.T. 1 + 2 + 3 -- 80/80 + N.T. P. mirabilis 1 (74-75) 167 73/80 + N.T. 2 (133-134) 123 8080 + N.T. P. aeruginosa 1e (83-84) 139 79/80 + N.T. 2e (85-86) 223 80/80 + N.T. S. saprophyticus 1 (98-99) 126 79/80 + + 2 (139-140) 190 80/80 + N.T. M. catarrhalis 1 (112-113) 157 79/80 + N.T. 2 (118-119) 118 80/80 + N.T. 3 (160-119) 137 80/80 + N.T. H. influenzae 1e (154-155) 217 80/80 + N.T. S. pneumoniae 1e (156-157) 134 80/80 + N.T. 2e (158-159) 197 74/80 + N.T. 3 (78-79) 175 67/80 + N.T. S. epidermidis 1 (147-148) 175 80/80 + N.T. 2 (145-146) 125 80/80 + N.T. S. aureus 1 (152-153) 108 80/80 + N.T. 2 (149-150) 151 80/80 + N.T. 3 (149-151) 176 80/80 + N.T. S. pyogenesf 1e (141-142) 213 80/80 + N.T. 2e (143-144) 157 24/24 + N.T. Universal 1e (126-127) 241 .sup. 194/195g + N.T. aAll primer pairs are specific in PCR assays since no amplification was observed with DNA from 66 different species of both Gram positive and Gram negative bacteria other than the species of interest. bThe ubiquity was normally tested on 80 strains of the species of interest. All retained primer pairs amplified at least 90% of the isolates. When combinations of primers were used, a ubiquity of 100% was reached. cFor all primer pairs and multiplex combinations, PCR amplifications directly performed from a bacterial colony were 100% species specific. dPCR assays performed directly from urine specimens. ePrimer pairs derived from data bank sequences. Primer pairs with no "e" are derived from our species-specific fragments. fFor S. pyogenes, primer pair #1 is specific for Group A Streptococci (GAS). Primer pair #2 is specific for GAS-producing exotoxin A gene (SpeA). gUbiquity tested on 195 isolates from 23 species representative of bacterial pathogens commonly encountered in clinical specimens. hOptimizations are in progress to eliminate non-specific amplification observed with some bacterial species other than the target species. iN.T.: not tested.
TABLE-US-00008 TABLE 8 Selected antibiotic resistance genes for diagnostic purposes Genes Antibiotics Bacteriaa SEQ ID NO: (blatem) TEM-1 β-lactams Enterobacteriaceae, 161 Pseudomonadaceae, Haemophilus, Neisseria (blarob) ROB-1 β-lactams Haemophilus, 162 Pasteurella (blashv) SHV-1 β-lactams Klebsiella and other 163 Enterobacteriaceae aadB, aacC1, Aminoglycosides Enterobacteriaceae, 164, 165, 166, aacC2, aacC3, Pseudomonadaceae 167, 168 aacC4, aacA4 mecA β-lactams Staphylococci 169 vanH, vanA, Vancomycin Enterococci 170 vanX satA Macrolides Enterococci 173 aacA-aphD Aminoglycosides Enterococci, 174 Staphylococci vat Macrolides Staphylococci 175 vga Macrolides Staphylococci 176 msrA Erythromycin Staphylococci 177 Int and Sul β-lactams, Enterobacteriaceae 171, 172 trimethoprim conserved aminoglycosides, Pseudomonadaecae sequences antiseptic, chloramphenicol aBacteria having high incidence for the specified antibiotic resistance genes. The presence in other bacteria is not excluded.
TABLE-US-00009 ANNEX I Annex I: Specific and ubiquitous oligonucleotide probes for hybridization Originating DNA fragment SEQ ID SEQ ID Nucleotide NO: Nucleotide Sequence NO: position Bacterial species: Escherichia coli 44 5'-CAC CCG CTT GCC TGG CAA GCT GCC C 5a 213-237 45 5'-CGT TTG TGG ATT CCA GTT CCA TCC G 5a 489-513 48 5'-TGA AGC ACT GGC CGA AAT GCT GCG T 6a 759-783 49 5'-GAT GTA CAG GAT TCG TTG AAG GCT T 6a 898-922 50 5'-TAG CGA AGG CGT AGC AGA AAC TAA C 7a 1264-1288 51 5'-GCA ACC CGA ACT CAA CGC CGG ATT T 7a 1227-1251 52 5'-ATA CAC AAG GGT CGC ATC TGC GGC C 7a 1313-1337 53 5'-TGC GTA TGC ATT GCA GAC CTT GTG GC 7a 111-136 54 5'-GCT TTC ACT GGA TAT CGC GCT TGG G 7a 373-397 Bacterial species: Proteus mirabilis 70b 5'-TGG TTC ACT GAC TTT GCG ATG TTT C 12 23-47 72 5'-TCG AGG ATG GCA TGC ACT AGA AAA T 12 53-77 72b 5'-CGC TGA TTA GGT TTC GCT AAA ATC TTA TTA 12 80-109 73 5'-TTG ATC CTC ATT TTA TTA ATC ACA TGA CCA 12 174-203 76 5'-CCG CCT TTA GCA TTA ATT GGT GTT TAT AGT 13 246-275 77 5'-CCT ATT GCA GAT ACC TTA AAT GTC TTG GGC 13 291-320 80b 5'-TTG AGT GAT GAT TTC ACT GAC TCC C 14 18-42 81 5'-GTG AGA CAG TGA TGG TGA GGA CAC A 15a 1185-1203 82 5'-TGG TTG TCA TGC TGT TTG TGT GAA AAT 15a 1224-1230 Bacterial species: Kiebsiella pneumoniae 57 5'-GTG GTG TCG TTC AGG GGT TTC AC 8 45-67 58 5'-GCG ATA TTC ACA CCC TAC GCA GCC A 9 161-185 59b 5'-GTC GAA AAT GCC GGA AGA GGT ATA CG 9 203-228 60b 5'-ACT GAG CTG CAG ACC GGT AAA ACT CA 9 233-258 63b 5'-CGT GAT GGA TAT TCT TAA CGA AGG GC 10 250-275 64b 5'-ACC AAA CTG TTG AGC CGC CTG GA 10 201-223 65 5'-GTG ATC GCC CCT CAT CTG CTA CT 10 77-99 66 5'-CGC CCT TCG TTA AGA ATA TCC ATC AC 10 249-274 69 5'-CAG GAA GAT GCT GCA CCG GTT GTT G 11a 296-320 Bacterial species: Pseudomonas aeruginosa 87 5'-AAT GCG GCT GTA CCT CGG CGC TGG T 18a 2985-3009 88 5'-GGC GGA GGG CCA GTT GCA CCT GCC A 18a 2929-2953 89 5'-AGC GCT GCT CCT CGG CAG CCT CTG C 18a 2821-2845 90 5'-TGG CTT TTG CAA CCG CGT TCA GGT T 18a 1079-1103 91 5'-GCG CCC GCG AGG GCA TGC TTC GAT G 19a 705-729 92 5'-ACC TGG GCG CCA ACT ACA AGT TCT A 19a 668-692 93 5'-GGC TAC GCT GCC GGG CTG CAG GCC G 19a 505-529 94 5'-CCG ATC TAG ACC ATC GAG ATG GGC G 20a 1211-1235 95 5'-GAG CGC GGC TAT GTG TTC GTC GGC T 20a 2111-2135 Bacterial species: Streptococcus pneumoniae 120 5'-TCT GTG CTA GAG ACT GCC CCA TTT C 30 423-447 121 5'-CGA TGT CTT GAT TGA GCA GGG TTA T 31a 1198-1222 Bacterial species: Staphylococcus saprophyticus 96 5'-CGT TTT TAC CCT TAC CTT TTC GTA CTA CC 21 45-73 97b 5'-TCA GGC AGA GGT AGT ACG AAA AGG TAA GGG 21 53-82 100 5'-CAC CAA GTT TGA CAC GTG AAG ATT CAT 22 89-115 101b 5'-ATG AGT GAA GCG GAG TCA GAT TAT GTG CAG 23 105-134 102 5'-CGC TCA TTA CGT ACA GTG ACA ATC G 24 20-44 103 5'-CTG GTT AGC TTG ACT CTT AAC AAT CTT GTC 24 61-90 104b 5'-GAC GCG ATT GTC ACT GTA CGT AAT GAG CGA 24 19-48 Bacterial species: Moraxella catarrhalis 108 5'-GCC CCA AAA CAA TGA AAC ATA TGG T 28 81-105 109 5'-CTG CAG ATT TTG GAA TCA TAT CGC C 28 126-130 110 5'-TGG TTT GAC CAG TAT TTA ACG CCA T 28 165-189 111 5'-CAA CGG CAC CTG ATG TAC CTT GTA C 28 232-256 114 5'-TTA CAA CCT GCA CCA CAA GTC ATC A 29 97-121 115 5'-GTA CAA ACA AGC CGT CAG CGA CTT A 29 139-163 116 5'-CAA TCT GCG TGT GTG CGT TCA CT 29 178-200 117 5'-GCT ACT TTG TCA GCT TTA GCC ATT CA 29 287-312 Bacterial species: Haemophilus influenzae 105b 5'-GCG TCA GAA AAA GTA GGC GAA ATG AAA G 25 138-165 106b 5'-AGC GGC TCT ATC TTG TAA TGA CAC A 26a 770-794 107b 5'-GAA ACG TGA ACT CCC CTC TAT ATA A 27a 5184-5208 Universal probesc 122b 5'-ATC CCA CCT TAG GCG GCT GGC TCC A -- -- 123 5'-ACG TCA AGT CAT CAT GGC CCT TAC GAG TAG G -- -- 124b 5'-GTG TGA CGG GCG GTG TGT ACA AGG C -- -- 125b 5'-GAG TTG CAG ACT CCA ATC CGG ACT ACG A -- -- 128b 5'-CCC TAT ACA TCA CCT TGC GGT TTA GCA GAG AG -- -- 129 5'-GGG GGG ACC ATC CTC CA GGC TAA ATA C -- -- 130b 5'-CGT CCA CTT TCG TGT TTG CAG AGT GCT GTG TT -- -- asequence from data banks bThese sequences are from the opposite DNA strand of the sequences given in the Sequence listing.
TABLE-US-00010 ANNEX II ANNEX II: Specific and ubiquitous primers f or DNA amplification Originating DNA fragment SEQ ID SEQ ID Nucleotide NO: Nucleotide Sequence NO: position Bacterial species: Escherichia coli 42 5'-GCT TTC CAG CGT CAT ATT G 4 177-195 43b 5'-GAT CTC GAC AAA ATG GTG A 4 260-278 46 5'-TCA CCC GCT TGC GTG GC 5a 212-228 47b 5'-GGA ACT GGA ATC CAC AAA C 5a 490-508 55 5'-GCA ACC CGA ACT CAA CGC C 7a 1227-1245 56b 5'-GCA GAT GCG ACC CTT GTG T 7a 1315-1333 131 5'-CAG GAG TAC GGT OAT TTT TA 3 60-79 132b 5'-ATT TCT GGT TTG GTC ATA CA 3 174-193 Bacterial species: Enterococcus faecalis 38 5'-GCA ATA CAG GGA AAA ATG TC 1a 69-88 39b 5'-CTT CAT CAA ACA ATT AAC TC 1a 249-268 40 5'-GAA CAG AAG AAG CCA AAA AA 2a 569-588 41b 5'-GCA ATC CCA AAT AAT ACG GT 2a 670-689 Bacterial species: Klebsiella pneumoniae 61 5'-GAC AGT CAG TTC GTC AGC C 9 37-55 62b 5'-CGT AGG GTG TGA ATA TCG C 9 161-179 67 5'-TCG CCC CTC ATC TGC TAC T 10 81-99 68b 5'-GAT CGT GAT GGA TAT TCT T 10 260-278 135 5'-GCA GCG TGG TGT CGT TCA 8 40-57 136b 5'-AGC TGG CAA CGG CTG GTC 8 170-187 137 5'-ATT CAC ACC CTA CGC AGC CA 9 166-185 138b 5'-ATC CGG CAG CAT CTC TTT GT 9 262-281 Bacterial species: Proteus mirabilis 74 5'-GAA ACA TCG CAA AGT CAG T 12 23-41 75b 5'-ATA AAA TGA GGA TCA AGT TC 12 170-189 133 5'-CGG GAG TCA GTG AAA TCA TC 14 17-36 134b 5'-CTA AAA TCG CCA CAC CTC TT 14 120-139 Bacterial species: Staphylococcus saprophyticus 98 5'-CGT TTT TAC CCT TAC CTT TTC GTA CT 21 45-70 99b 5'-ATC GAT CAT CAC ATT CCA TTT GTT TTT A 21 143-170 139 5'-CTG GTT AGC TTG ACT CTT AAC AAT C 24 61-85 140b 5'-TCT TAA CGA TAG AAT GGA GCA ACT G 24 26-250 Bacterial species: Psuedomonas aeruginosa 83 5'-CGA GCG GGT GGT GTT CAT C 16a 554-572 84b 5'-CAA GTC GTG GTG GGA GGG A 16a 674-692 85 5'-TCG CTG TTC ATC AAG ACC C 17a 1423-1441 86b 5'-CCG AGA ACC AGA CTT CAT C 17a 1627-1645 Bacterial species: Moraxella catarrhalis 112 5'-GGC ACC TGA TGT ACC TTG 28 235-252 113b 5'-AAC AGC TCA CAC GCA TT 28 375-391 118 5'-TGT TTT GAG CTT TTT ATT TTT TGA 29 41-64 119b 5'-CGC TGA CGG CTT GTT TGT ACC A 29 137-158 160 5'-GCT CAA ATC AGG GTC AGC 29 22-39 119b 5'-CGC TGA CGG CTT GTT TGT ACG A 29 137-158 Bacterial species: Staphylococcus epidermidis 145 5'-ATC AAA AAG TTG GCG AAC CTT TTC A 36 21-45 146b 5'-CAA AAG AGC GTG GAG AAA AGT ATC A 36 121-145 147 5'-TCT CTT TTA ATT TCA TCT TCA ATT CCA TAG 36 448-477 148b 5'-AAA CAC AAT TAC AGT CTG GTT ATC CAT ATC 36 593-622 Bacterial species: Staphylococcus aureus 149b 5'-CTT CAT TTT ACG GTG ACT TCT TAG AAG ATT 37 409-438 150 5'-TCA ACT GTA GCT TCT TTA TCC ATA CGT TGA 37 288-317 149b 5'-CTT CAT TTT ACG GTG ACT TCT TAG AAG ATT 37 409-438 151 5'-ATA TTT TAG CTT TTC AGT TTC TAT ATC AAC 37 263-292 152 5'-AAT CTT TGT CGG TAC ACG ATA TTC TTC ACG 37 5-34 153b 5'-CGT AAT GAG ATT TCA GTA GAT AAT ACA ACA 37 83-112 Bacterial species: Haemophilus influenzae 154 5'-TTT AAC GAT CCT TTT ACT CCT TTT G 27a 5074-5098 155b 5'-ACT GCT GTT GTA AAG AGG TTA AAA T 27a 5266-5290 Bacterial species: Streptococcus pneumoniae 78 5'-AGT AAA ATG AAA TAA GAA CAG GAC AG 34 164-189 79b 5'-AAA ACA GGA TAG GAG AAC GGG AAA A 34 314-338 156 5'-ATT TGG TGA CGG GTG ACT TT 31a 1401-1420 157b 5'-GCT GAG GAT TTG TTC TTC TT 31a 1515-1534 158 5'-GAG CGG TTT CTA TGA TTG TA 35a 1342-1361 159b 5'-ATC TTT CCT TTC TTG TTC TT 35a 1519-1538 Bacterial species: Steptococcus pyogenes 149 5'-TGA AAA TTC TTG TAA CAG GC 32a 286-305 142b 5'-GGC CAC CAG CTT GCC CAA TA 32a 479-498 143 5'-ATA TTT TCT TTA TGA GGG TG 33a 966-985 144b 5'-ATC CTT AAA TAA AGT TGC CA 33a 1103-1122 Universal primersc 126 5'-GGA GGA AGG TGG GGA TGA CG -- -- 127b 5'-ATG GTG TGA CGG GCG GTG TG -- -- asequence from data banks bThese sequences are from the opposite DNA strand of the sequences given in the Sequence listing.
TABLE-US-00011 ANNEX III ANNEX III Selection of Universal Probes by Alignment of the Sequences of Bacterial 16S and 23S Ribosoma RNA Genes Reverse strand of TGGACGG AGCCGCCTA GGTGGGAT SEQ ID NO:122 1251 1300 Streptococcus TGAGGTAACC TTTTGGAGCC AGCCGCCTAA GGTGGGATAG ATGANNGGGG salivarius Proteus vulgaris TAGCTTAACC TTCGGGAGGG CGCTTACCAC TTTGTGATTC ATGACTGGGG Pseudomonas aeruginosa TAGTCTAACC GCAAGGGGGA CGGTTACCAC GGAGTGATTC ATGACTGGGG Neiserria gonorrhoeae TAGGGTAACC GCAAGGAGTC CGCTTACCAC GGTATGCTTC ATGACTGGGG Streptococcus lactis TTGCCTAACC GCAAGGAGGG CGCTTCCTAA GGTAAGACCG ATGACNNGGG SEQ ID NO: 123 ACGTCAAGTC ATCATGGC CCTTACGAGT AGG 1251 1300 Haemophilus influenzae GGTNGGGATG ACGTCAAGTC ..ATCATGGC CCTTACGAGT AGGGCTACAC Neiserria gonorrhoeae GGTGGGGATG ACGTCAAGTC ..CTCATGGC CCTTATGACC AGGGCTTCAC Pseudomonas cepacia GGTNGGGATG ACGTCAAGTC ..CTCATGGC CCTTATGGGT AGGGCTTCAC Serratia marcescens GGTGGGGATG ACGTCAAGTC ..CTCATGGC CCTTATGGGT AGGGCTTCAC Escherichia coli GGTGGGGATG ACGTCAAGTC ..ATCATGGC CCTTACGACC AGGGCTACAC Proteus vulgaris GGTGGGGATG ACGTTAAGTC GTATCATGGC CCTTACGAGT AGGGCTACAC Pseudomonas aeruginosa GGTGGGGATG ACGTCAAGTC ..ATCATGGC CCTTACGGCN AGGGCTACAC Clostridium pefringens GGTGGGGATG ACGTNNAATC ..ATCATGCC CNTTATGTGT AGGGCTACAC Mycoplasma hominis GGTGGGGATG ACGTCAAATC ..ATCATGCC TCTTACGAGT GGGGCCACAC Helicobacter pylori GGTGGGGACG ACGTCAAGTC ..ATCATGGC CCTTACGCCT AGGGCTACAC Mycoplasraa pneumoniae GGAAGGGATG ACGTCAAATC ..ATCATGCC CCTTATGTCT AGGGCTGCAA Reverse of the probe GCCTTGTACA CACCGCCCGT CACAC SEQ ID NO:124 1451 1490 Escherichia coli ACGTTCCCGG GCCTTGTACA CACCGCCCGT CACACCATGG Neiserria ghonorrhoeae ACGTTCCCNG NNCTTGTACA CACCGCCCGT CACACCATGG Pseudomonas cepacia ACGTTCCCGG GTCTTGTACA CACNGCCCGT CACACCATGG Serratia marcescens ACGTTCCCGG GCCTTGTACA CACCGCCCGT CACACCATGG Proteus vulgaris ACGTTCCCGG GCCTTGTACA CACCGCCCGT CACACCATGG Haemophilus influenzae ACGTTCCCGG GCNTTGTACA CACCGCCCGT CACACCATGG Pseudomonas aeruginosa ACGTTCCCGG GCCTTGTACA CACCGCCCGT CACACCATGG Clostridium pefringens ACGTTCCCNG GTCTTGTACA CACCGCNCGT CACACCATGA Mycoplasma hominis ACGTTCTCGG GTCTTGTACA CACCGCCCGT CACACCATGG Helicobacter pylori ACGTTCCCGG GTCTTGTACT CACCGCCCGT CACACCATGG Mycoplasma pneumoniae ACGTTCTCGG GTCTTGTACA CACCGCCCGT CAAACTATGA Reverse strand of TCG TAGTCCGGAT TGGAGTCTGC AACTC SEQ ID NO: 125 1361 1400 Escherichia coli AAGTGCGTCG TAGTCCGGAT TGGAGTCTGC AACTCGACTC Neiserria ghonorrhoeae AAACCGATCG TAGTCCGGAT TGCACTCTGC AACTCGAGTG Pseudomonas cepacia AAACCGATCG TAGTCCGGAT TGCACTCTGC AACTCGAGTG Serratia marcescens AAGTATGTCG TAGTCCGGAT TGGAGTCTGC AACTCGACTC Proteus vulgaris AAGTCTGTCG TAGTCCGGAT TGGAGTCTGC AACTCGACTC Haemophilus influenzae AAGTACGTCT AAGTCCGGAT TGGAGTCTGC AACTCGACTC Pseudomonas aeruginosa AAACCGATCG TAGTCCGGAT CGCAGTCTGC AACTCGACTG Clostridium pefringens AAACCAGTCT CAGTTCGGAT TGTAGGCTGA AACTCGCCTA Mycoplasma hominis AAGCCGATCT CAGTTCGGAT TGGAGTCTGC AATTCGACTC Helicobacter pylori ACACC..TCT CAGTTCGGAT TGTAGGCTGC AACTCGCCTG Mycoplasma pneumoniae AAGTTGGTCT CAGTTCGGAT TGAGGGCTGC AATTCGTCTT Reverse strand of SEQ ID NO: 128 481 530 Lactobacilius lactis AAACACAGCT CTCTGCTAAA CCGCAAGGTG ATGTATAGGG GGTGACGCCT Escherichia coli AAACACAGCA CTGTGCAAAC ACGAAAGTGG ACGTATACGG TGTGACGCCT Pseudomonas aeruginosa AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG TGTGACGCCT Pseudomonas cepacia AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAAGG TGTGACGCCT Bacillus AAACACAGGT CTCTGCGAAG TCGTAAGGCG ACGTATAGGG GCTGACACCT stearothermophilus Micrococcus luteus AAACACAGGT CCATGCGAAG TCGTAAGACG ATGTATATGG ACTGACTCCT SEQ ID NO: 129 GGGGGGACC ATCCTCCAAG GCTAAATAC 1991 2040 Escherichia coli TGTCTGAATG TGGGGGGACC ATCCTCCAAG GCTAAATACT CCTGACTGAC Pseudomonas aeruginosa TGTCTGAACA TGGGGGGACC ATCCTCCAAG GCTAAATACT ACTGACTGAC Pseudomonas cepacia TGTCTGAAGA TGGGGGGACC ATCCTCCAAG GCTAAATACT CGTGATCGAC Lactobacllus lactis AGTTTGAATC GCCCAGGACC ATCTCCCAAC CCTAAATACT CCTTAGTGAC Micrococcus luteus CGTGTGAATC TGCCAGGACC ACCTGGTAAG CCTGAATACT ACCTGTTGAC Reverse strand of AACACAGCA CTCTGCAAAC ACGAAAGTGG ACG SEQ ID NO: 130 1981 2030 Pseudomonas aeruginosa TGTTTATTAA AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG Escherichia coli TGTTTATTAA AAACACAGCA CTGTGCAAAC ACGAAAGTGG ACGTATACGG Bacillus TGTTTAATAA AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG stearothermophilus Lactobacillus lactis TGTTTATCAA AAACACAGCT CTCTGCTAAA CCACAAGGTG ATGTATAGGG Micrococcus luteus TGTTTATCAA AAACACAGGT CCATGCGAAG TCGTAAGACG ATGTATATGG SEQ ID NO: 126 GGAGGAA GGTGGGGATG ACG Reverse strand of CA CACCGCCCGT CACACCAT SEQ ID NO: 127 Escherichia coli ACTGGAGGAA GGTGGGGATG ACGTCAAGTC...GCCTTGTACA CACCGCCCGT CACACCATGG Neiserria ghonorrhoeae GCCGGAGGAA GGTGGGGATG ACGTCAAGTC...NNCTTGTACA CACCGCCCGT CACACCATGG Pseudomonas cepacia ACCGGAGGAA GGTNGGGATG ACGTCAAGTC...GTCTTGTACA CACNGCCCGT CACACCATGG Serratia marcescens ACTGGAGGAA GGTGGGGATG ACGTCAAGTC...GCCTTGTACA CACCGCCCGT CACACCATGG Proteus vulgaris ACCGGAGGAA GGTGGGGATG ACGTTAAGTC...GCCTTGTACA CACCGCCCGT CACACCATGG Haemophilus influenzae ACTGGAGGAA GGTNGGGATG ACGTCAAGTC...GCNTTGTACA CACCGCCCGT CACACCATGG Legionella pneumophila ACCGGAGGAA GGCGGGGATG ACGTCAAGTC...GCCTTGTACA CACCGCCCGT CACACCATGG Pseudomonas aeruginosa ACCGGAGGAA GGTGGGGATG ACGTCAAGTC...GCCTTGTACA CACCGCCCGT CACACCATGG Clostridium pefringens CCAGGAGGAA GGTGGGGATG ACGTNNAATC...GTCTTGTACA CACCGCNCGT CACACCATGA Mycoplasma hominis CTGGGAGGAA GGTGGGGATG ACGTCAAATC...GTCTTGTACA CACCGCCCGT CACACCATGG Helicobacter pylori GGAGGAGGAA GGTGGGGACG ACGTCAAGTC...GTCTTGTACT CACCGCCCGT CACACCATGG Mycoplasma pneumoniae ATTGGAGGAA GGAAGGGATG ACGTCAAATC...GTCTTGTACA CACCGCCCGT CAAACTATGA
Sequence CWU
1
17711817DNAEnterococcus faecalis 1acagtaaaaa agttgttaac gaatgaattt
gttaacaact tttttgctat ggtattgagt 60tatgaggggc aatacaggga aaaatgtcgg
ctgattaagg aatttagata gtgccggtta 120gtagttgtct ataatgaaaa tagcaacaaa
tatttacgca gggaaagggg cggtcgttta 180acgggaaaaa ttagggagga taaagcaata
cttttgttgg gaaaagaaat aaaaggaaac 240tggggaagga gttaattgtt tgatgaaggg
aaataaaatt ttatacattt taggtacagg 300catctttgtt ggaagttcat gtctattttc
ttcacttttt gtagccgcag aagaacaagt 360ttattcagaa agtgaagttt caacagtttt
atcgaagttg gaaaaggagg caatttctga 420ggcagctgct gaacaatata cggttgtaga
tcgaaaagaa gacgcgtggg ggatgaagca 480tcttaagtta gaaaagcaaa cggaaggcgt
tactgttgat tcagataatg tgattattca 540tttagataaa aacggtgcag taacaagtgt
tacaggaaat ccagttgatc aagttgtgaa 600aattcaatcg gttgatgcaa tcggtgaaga
aggagttaaa aaaattgttg cttctgataa 660tccagaaact aaagatcttg tctttttagc
tattgacaaa cgtgtaaata atgaagggca 720attattttat aaagtcagag taacttcttc
accaactggt gaccccgtat cattggttta 780taaagtgaac gctacagatg gaacaattat
ggaaaaacaa gatttaacgg aacatgtcgg 840tagtgaagta acgttaaaaa actcttttca
agtaacgttt aatgtaccag ttgaaaaaag 900caatacggga attgctttac acggaacgga
taacacaggg gtttaccatg cagtagttga 960tggcaaaaat aattattcta ttattcaagc
gccatcacta gcgacattaa atcagaatgc 1020tattgacgcc tatacgcatg gaaaatttgt
gaaaacatat tatgaagatc atttccaacg 1080acacagtatt gatgatcgag ggatgcccat
cttgtcagtt gttgatgaac aacatccaga 1140tgcttatgac aatgcttttt gggatggaaa
agcaatgcgt tatggtgaaa caagtacacc 1200aacaggaaaa acgtatgctt cctctttaga
tgtagttggt catgaaatga cacatggtgt 1260gacggaacat actgccggtt tagaatattt
aggacaatca ggtgccttga atgaatctta 1320ttctgatttg atgggttata ttatttcggg
tgcatctaat ccagaaattg gtgcggatac 1380tcagagtgtt gaccgaaaaa caggtattcg
aaatttacaa acgccaagta aacacggaca 1440accagaaacc atggctcaat acgacgatcg
agcacggtat aaaggaacgc cttattatga 1500tcaaggcggt gttcattata acagtggaat
tattaatcgg attggttaca ccattatcca 1560gaacttaggc attgaaaaag cacagactat
tttctacagc tcgttagtaa attacttaac 1620acctaaagca caattcagtg atgctcgtga
tgcgatgctt gctgctgcaa aagttcaata 1680tggcgatgaa gcagcttcag tggtgtcagc
agcctttaac tctgctggaa tcggagctaa 1740agaagacatt caggtaaacc aaccaagtga
atctgttctg gtcaatgaat gaaaaaaatt 1800ccccaattaa ataaaaa
181722275DNAEnterococcus faecalis
2ggtaccaaag aaaaaaacga acgccacaac caacagcctc taaagcaaca cctgcttctg
60aaattgaggg agatttagca aatgtcaatg agattctttt ggttcacgat gatcgtgtcg
120ggtcagcaac gatgggaatg aaagtcttag aagaaatttt agataaagag aaaatttcaa
180tgccgattcg aaaaattaat attaatgaat taactcaaca aacacaggct ttaattgtca
240caaaagctga actaacggaa caagcacgta aaaaagcacc gaaagcgaca cacttatcag
300taaaaagtta tggttaatcc ccaaaaatat gaaacagtgg gtttcgctct taaaagaaag
360tgcctagaga ggaagaaaac aatggaaaat cttacgaata tttcaattga attaaatcaa
420cagtttaata caaaagaaga agctattcgc ttttccggcc agaaactagt cgaggcaggc
480tgtgttgagc ccgcttatat cgaagcaatg attgaaagag accaattgct atctgcccat
540atggggaatt ttattgccat tcctcatgga acagaagaag ccaaaaaatt agtgaaaaaa
600tcaggaatct gtgtagtgca agtcccagag ggcgttaatt ttggcaccga agaagatgaa
660aaaattgcta ccgtattatt tgggattgcc ggagtcggtg aagaacattt gcaattagtc
720caacaaattg cactttattg tagtgatatg gataacgtgg tgcaacttgc cgatgcatta
780agtaaagaag aaataacaga aaatttagcc attgcttaaa ggagagaata agaatgaacg
840cagtacattt tggagcagga aatattggac gcggctttat tggcgaaatt ttagctaaaa
900cgggtttcat attaccgttt gtggatgtta atggaaacca tcatcaagcg ttaaaagaac
960gtaaaagtta tacaattgaa ttggccgatg cctcacatca acaaattaac gttgaaaatg
1020tgaccgggtt aaataacatg acagaaccag aaaaagtagt agaagcaatt gcggaagccg
1080atttagtcac gacggcaatt ggtcctaata ttttaccaag aattgctgaa ttaattgctc
1140aaggaattga tgcacgtgcc gaagcaaatt gtcaaaacgg cccgctggat attatcgctt
1200gtgaaaatat gattggtggt tcaacctttt tagcagaaga agtggccata atatttgaaa
1260aacccagctt atctgaacaa tggattggtt ttcctgatgc ggcagttgat cggattgttc
1320cattacaaaa acataaagat ccactttttg ttcaagttga gcctttttgt gaatgggtca
1380ttgatgatac caaccgaaaa gccaaagaga ttcagttaga aggcgtcatt acttgtcgat
1440tagagccgta tattgaacga aaattattta gtgtaaccag tggccatgct acagttgcct
1500atacaggggc gttgttaggc tatcaaacca ttgacgaagc gatgcaggac gccttagtgg
1560tagcgcaact caaatcagtt ttgcaggaaa ccggtaaact tttagtggcc aaatggaatt
1620ttgatgaaca agaacatgca gcctatattg aaaaaattat caaccgtttc caaaataaat
1680atatttcaga tgctattaca cgtgtagcac ggacaccaat cagaaaatta ggtgcgcaag
1740aacggtttat tcgaccaatc cgtgaattac aggaacgcaa tctagtgtcg gccgcattta
1800tagcaatgat tggtattgtc tttaattatc atgatccaga agatgaacaa agccgtcaat
1860tacaggaaat gcttgaccaa gaaagtgttg atacagtgga tcgctgaagt aacgggcatt
1920gaagatccag aaacggttaa aaatattaaa caaaacgtag aactgctatg cgcgaccaca
1980agtagcataa ttaacaaaat ccttctacca agatacttca catttcttaa ttaaagaaaa
2040aacaaccgcg cctcacctga gccgaccccc aaaagttaga cctagaaatc taacttttgg
2100aggttttttt gtatggcaaa atacagtttt gaaatttaaa cttaaacttg ttcatgacta
2160cttatatggt caaggaggtc taaggtttct cgcaaagaag tatgggttta aagatagtct
2220caaataagca aatggataaa tgcctataaa gaacttggtg aagaaggggg gatcc
22753227DNAEscherichia coli 3gatccgccat gggttgtttt ccgattgagg attttataga
tggtttctgg cgacctgcac 60aggagtacgg tgatttttaa ttattgcaat tgcacaagag
tcagttctcc cccaaagaca 120gcaccggtat caatataatg caggttgcca atatccacgc
gatggcgcaa aggtgtatga 180ccaaaccaga aatgatcggc cacctgcatc gccagttcgc
gagtcgg 2274278DNAEscherichia coli 4gatctaaatc
aaattaattg gttaaagata accacagcgg ggccgacata aactctgaca 60agaagttaac
aaccatataa cctgcacagg acgcgaacat gtcttctcat ccgtatgtca 120cccagcaaaa
taccccgctg gcggacgaca ccactctgat gtccactacc gatctcgctt 180tccagcgtca
tattggggcg cgctacgttg gggcgtgggc gtaattggtc aatcaggcgc 240ggggtcagcg
gataaacatt caccattttg tcgagatc
27851596DNAEscherichia coli 5atggctgaca ttctgctgct cgataatatc gactctttta
cgtacaacct ggcagatcag 60ttgcgcagca atgggcataa cgtggtgatt taccgcaacc
atataccggc gcaaacctta 120attgaacgct tggcgaccat gagtaatccg gtgctgatgc
tttctcctgg ccccggtgtg 180ccgagcgaag ccggttgtat gccggaactc ctcacccgct
tgcgtggcaa gctgcccatt 240attggcattt gcctcggaca tcaggcgatt gtcgaagctt
acgggggcta tgtcggtcag 300gcgggcgaaa ttctccacgg taaagcctcc agcattgaac
atgacggtca ggcgatgttt 360gccggattaa caaacccgct gccggtggcg cgttatcact
cgctggttgg cagtaacatt 420ccggccggtt taaccatcaa cgcccatttt aatggcatgg
tgatggcagt acgtcacgat 480gcggatcgcg tttgtggatt ccagttccat ccggaatcca
ttctcaccac ccagggcgct 540cgcctgctgg aacaaacgct ggcctgggcg cagcataaac
tagagccagc caacacgctg 600caaccgattc tggaaaaact gtatcaggcg cagacgctta
gccaacaaga aagccaccag 660ctgttttcag cggtggtgcg tggcgagctg aagccggaac
aactggcggc ggcgctggtg 720agcatgaaaa ttcgcggtga gcacccgaac gagatcgccg
gggcagcaac cgcgctactg 780gaaaacgcag cgccgttccc gcgcccggat tatctgtttg
ctgatatcgt cggtactggc 840ggtgacggca gcaacagtat caatatttct accgccagtg
cgtttgtcgc cgcggcctgt 900gggctgaaag tggcgaaaca cggcaaccgt agcgtctcca
gtaaatctgg ttcgtccgat 960ctgctggcgg cgttcggtat taatcttgat atgaacgccg
ataaatcgcg ccaggcgctg 1020gatgagttag gtgtatgttt cctctttgcg ccgaagtatc
acaccggatt ccgccacgcg 1080atgccggttc gccagcaact gaaaacccgc accctgttca
atgtgctggg gccattgatt 1140aacccggcgc atccgccgct ggcgttaatt ggtgtttata
gtccggaact ggtgctgccg 1200attgccgaaa ccttgcgcgt gctggggtat caacgcgcgg
cggtggtgca cagcggcggg 1260atggatgaag tttcattaca cgcgccgaca atcgttgccg
aactgcatga cggcgaaatt 1320aaaagctatc agctcaccgc agaagacttt ggcctgacac
cctaccacca ggagcaactg 1380gcaggcggaa caccggaaga aaaccgtgac attttaacac
gtttgttaca aggtaaaggc 1440gacgccgccc atgaagcagc cgtcgctgcg aacgtcgcca
tgttaatgcg cctgcatggc 1500catgaagatc tgcaagccaa tgcgcaaacc gttcttgagg
tactgcgcag tggttccgct 1560tacgacagag tcaccgcact ggcggcacga gggtaa
159662703DNAEscherichia coli 6gacgacttag ttttgacgga
atcagcatag ttaatcactt cactgtggaa aatgaggaaa 60tattattttt tttgcgcttc
gtaattaatg gttataaggt cggccagaaa cctttctaat 120gcaagcgatg acgttttttt
atgtgtctga atttgcactg tgtcacaatt ccaaatcttt 180attaacaact cacctaaaac
gacgctgatc cagcgtgaat actggtttcc cttatgttca 240tcagattcat ttaagcaagg
gtttcttctt cattcctgat gaaagtgcca tctaaaaaga 300tgatcttaat aaatctatta
agaatgagat ggagcacact ggatatttta cttatgaaac 360tgtttcactc ctttacttaa
tttatagagt taccttccgc tttttgaaaa tacgcaacgg 420ccattttttg cacttagata
cagattttct gcgctgtatt gcattgattt gatgctaatc 480ctgtggtttg cactagcttt
aagtggttga gatcacattt ccttgctcat ccccgcaact 540cctccctgcc taatcccccg
caggatgagg aaggtcaaca tcgagcctgg caaactagcg 600ataacgttgt gttgaaaatc
taagaaaagt ggaactccta tgtcacaacc tatttttaac 660gataagcaat ttcaggaagc
gctttcacgt cagtggcagc gttatggctt aaattctgcg 720gctgaaatga ctcctcgcca
gtggtggcta gcagtgagtg aagcactggc cgaaatgctg 780cgtgctcagc cattcgccaa
gccggtggcg aatcagcgac atgttaacta catctcaatg 840gagtttttga ttggtcgcct
gacgggcaac aacctgttga atctcggctg gtatcaggat 900gtacaggatt cgttgaaggc
ttatgacatc aatctgacgg acctgctgga agaagagatc 960gacccggcgc tgggtaacgg
tggtctggga cgtctggcgg cgtgcttcct cgactcaatg 1020gcaactgtcg gtcagtctgc
gacgggttac ggtctgaact atcaatatgg tttgttccgc 1080cagtcttttg tcgatggcaa
acaggttgaa gcgccggatg actggcatcg cagtaactac 1140ccgtggttcc gccacaacga
agcactggat gtgcaggtag ggattggcgg taaagtgacg 1200aaagacggac gctgggagcc
ggagtttacc attaccggtc aagcgtggga tctccccgtt 1260gtcggctatc gtaatggcgt
ggcgcagccg ctgcgtctgt ggcaggcgac gcacgcgcat 1320ccgtttgatc tgactaaatt
taacgacggt gatttcttgc gtgccgaaca gcagggcatc 1380aatgcggaaa aactgaccaa
agttctctat ccaaacgaca accatactgc cggtaaaaag 1440ctgcgcctga tgcagcaata
cttccagtgt gcctgttcgg tagcggatat tttgcgtcgc 1500catcatctgg cggggcgtga
actgcacgaa ctggcggatt actaagttat tcagctgaac 1560gatacccacc caactatcgc
gattccagaa ctgctgcgcg tgctgatcga tgagcaccag 1620atgagctggg atgacgcttg
ggccattacc agcaaaactt tcgcttacac caaccatacc 1680ctgatgccag aagcgctgga
acgctgggat gtgaaactgg tgaaaggctt actgccgcgc 1740cacatgcaga ttattaacga
aattaatact cgctttaaaa cgctggtaga gaaaacctgg 1800ccgggcgatg aaaaagtgtg
ggccaaactg gcggtggtgc acgacaaaca agtgcatatg 1860gcgaacctgt gtgtggttgg
cggtttcgcg gtgaacggtg ttgcggcgct gcactcggat 1920ctggtggtga aagatctgtt
cccggaatat caccagctat ggccgaacaa attccataac 1980gtcaccaacg gtattacccc
acgtcgctgg atcaaacagt gcaacccggc actggcggct 2040ctgttggata aatcactgca
aaaagagtgg gctaacgatc tcgatcagct gatcaatctg 2100gttaaattgg ctgatgatgc
gaaattccgt cagctttatc gcgtgatcaa gcaggcgaat 2160aaagtccgtc tggcggagtt
tgtgaaagtt cgtaccggta ttgacatcaa tccacaggcg 2220attttcgata ttcagatcaa
acgtttgcac gagtacaaac gccagcacct gaatctgctg 2280cgtattctgg cgttgtacaa
agaaattcgt gaaaacccgc aggctgatcg cgtaccgcgc 2340gtcttcctct tcggcgcgaa
agcggcaccg ggctactacc tggctaagaa tattatcttt 2400gcgatcaaca aagtggctga
cgtgatcaac aacgatccgc tggttggcga taagttgaag 2460gtggtgttcc tgccggatta
ttgcgtttcg gcggcggaaa aactgatccc ggcggcggat 2520atctccgaac aaatttcgac
tgcaggtaaa gaagcttccg gtaccggcaa tatgaaactg 2580gcgctcaatg gtgcgcttac
tgtcggtacg ctggatgggg cgaacgttga aatcgccgag 2640aaagtcggtg aagaaaatat
ctttattttt ggtcatacgg tcaaacaagt gaaggcaatc 2700gac
270371391DNAEscherichia coli
7agagaagcct gtcggcaccg tctggtttgc ttttgccact gcccgcggtg aaggcattac
60ccggcgggat gcttcagcgg cgaccgtgat gcggtgcgtc gtcaggctac tgcgtatgca
120ttgcagacct tgtggcaaca atttctacaa aacacttgat actgtatgag catacagtat
180aattgcttca acagaacata ttgactatcc ggtattaccc ggcatgacag gagtaaaaat
240ggctatcgac gaaaacaaac agaaagcgtt ggcggcagca ctgggccaga ttgagaaaca
300atttggtaaa ggctccatca tgcgcctggg tgaagaccgt tccatggatg tggaaaccat
360ctctaccggt tcgctttcac tggatatcgc gcttggggca ggtggtctgc cgatgggccg
420tatcgtcgaa atctacggac cggaatcttc cggtaaaacc acgctgacgc tgcaggtgat
480cgccgcagcg cagcgtgaag gtaaaacctg tgcgtttatc gatgctgaac acgcgctgga
540cccaatctac gcacgtaaac tgggcgtcga tatcgacaac ctgctgtgct cccagccgga
600caccggcgag caggcactgg aaatctgtga cgccctggcg cgttctggcg cagtagacgt
660tatcgtcgtt gactccgtgg cggcactgac gccgaaagcg gaaatcgaag gcgaaatcgg
720cgactctcac atgggccttg cggcacgtat gatgagccag gcgatgcgta agctggcggg
780taacctgaag cagtccaaca cgctgctgat cttcatcaac cagatccgta tgaaaattgg
840tgtgatgttc ggtaacccgg aaaccactac cggtggtaac gcgctgaaat tctacgcctc
900tgttcgtctc gacatccgtc gtatcggcgc ggtgaaagag ggcgaaaacg tggtgggtag
960cgaaacccgc gtgaaagtgg tgaagaacaa aatcgctgcg ccgtttaaac aggctgaatt
1020ccagatcctc tacggcgaag gtatcaactt ctacggcgaa ctggttgacc tgggcgtaaa
1080agagaagctg atcgagaaag caggcgcgtg gtacagctac aaaggtgaga agatcggtca
1140gggtaaagcg aatgcgactg cctggctgaa agataacccg gaaaccgcga aagagatcga
1200gaagaaagta cgtgagttgc tgctgagcaa cccgaactca acgccggatt tctctgtaga
1260tgatagcgaa ggcgtagcag aaactaacga agatttttaa tcgtcttgtt tgatacacaa
1320gggtcgcatc tgcggccctt ttgctttttt aagttgtaag gatatgccat gacagaatca
1380acatcccgtc g
13918238DNAKlebsiella pneumoniae 8tcgccaggaa ggcggcattc ggctgggtca
gagtgacctg cagcgtggtg tcgttcagcg 60ctttcacccc caacgtctcg ggtccctttt
gcccgagggc aatctcgcgg gcgttggcga 120tatgcatatt gccagggtag ctcgcgtagg
gggaggctgt tgccggcgag accagccgtt 180gccagctcca gacgatatcc tgcgctgtaa
tggccgtgcc gtcagaccag gtcagacc 2389385DNAKlebsiella pneumoniae
9cagcgtaatg cgccgcggca taacggcgcc actatcgaca gtcagttcgt cagcctgcag
60cctgggctga atctgggacc atggcgcctg ccgaactaca gcacctatag ccacagcgat
120aacaacagcc gctgggagtc ggtttactcc tatcttgccc gcgatattca caccctacgc
180agccagctgg tggtcggtaa tacgtatacc tcttccggca ttttcgacag tttgagtttt
240accggtctgc agctcagttc gacaaagaga tgctgccgga tagcctgcat gctttgcgcc
300gacgattcga gggatcgcgc gcaccaccgc ggaggtctcg gtttatcaga atggttacag
360catttataaa accaccgtcg ctacc
38510462DNAKlebsiella pneumoniae 10ctctatattc aggacgaaca tatctggacc
tctggcgggg tcagttccgg ctttgatcgc 60cctgcacccg cagcgggtga tcgcccctca
tctgctactg cggcgctgca acaggcgacg 120atcgatgacg ttattcctgg ccagcaaaca
gcagaccaat taaggtctga tagtggctct 180cttcctccgg cgcgcgacgg tccaggcggc
tcaacagttt ggtgcatagc gctttgcggt 240tgagatgacg cccttcgtta agaatatcca
tcacgatctc cgtccatgga gagtagcgtt 300tattccagaa tagggttttt caggatctca
tggatctgcg cctgcttatc gctattttgt 360aaccagatcg cataaagtgg acgggataac
gtagcgctgt ccatgaccgt atgtaaccca 420tgcttctctt tcgcccagcg agcaggtagc
caacagcagc cg 46211730DNAKlebsiella pneumoniae
11gctgaccgct aaactgggtt acccgatcac tgacgatctg gacatctaca cccgtctggg
60cggcatggtt tggcgcgctg actccaaagg caactacgct tcaaccggcg tttcccgtag
120cgaacacgac actggcgttt ccccagtatt tgctggcggc gtagagtggg ctgttactcg
180tgacatcgct acccgtctgg aataccagtg ggttaacaac atcggcgacg cgggcactgt
240gggtacccgt cctgataacg gcatgctgag cctgggcgtt tcctaccgct tcggtcagga
300agatgctgca ccggttgttg ctccggctcc ggctccggct ccggaagtgg ctaccaagca
360cttcaccctg aagtctgacg ttctgttcaa cttcaacaaa gctaccctga aaccggaagg
420tcagcaggct ctggatcagc tgtacactca gctgagcaac atggatccga aagacggttc
480cgctgttgtt ctgggctaca ccgaccgcat cggttccgaa gcttacaacc agcagctgtc
540tgagaaacgt gctcagtccg ttgttgacta cctggttgct aaaggcatcc cggctggcaa
600aatctccgct cgcggcatgg gtgaatccaa cccggttact ggcaacacct gtgacaacgt
660gaaagctcgc gctgccctga tcgattgcct ggctccggat cgtcgtgtag agatcgaagt
720taaaggtatc
73012225DNAProteus mirabilis 12cgctactgtt taaatctcat ttgaaacatc
gcaaagtcag tgaaccacat attcgaggat 60ggcatgcact agaaaatatt aataagattt
tagcgaaacc taatcagcgc aatatcgctt 120aattatttta ggtatgttct cttctatcct
acagtcacga ggcagtgtcg aacttgatcc 180tcattttatt aatcacatga ccaatggtat
aagcgtcgtc acata 22513402DNAProteus mirabilis
13acattttaaa taggaagcca cctgataaca tccccgcagt tggatcatca gatttatagc
60ggcatttggt atccgctaga taaaagcagt ccaacgatcc cgccaattgt tagatgaaat
120tggactattc tttttatttg ctccgcttta tcacagtggt tttcgctttg ccgcccctgt
180gcgccaacag ctaagaacac gcacgctctt taatgtgtta ggcccattaa ttaatccagc
240gcgttccgcc tttagcatta attggtgttt atagtcctga attattaatg cctattgcag
300ataccttaaa tgtcttgggc tacaaacgtg cggcagtggt ccatagtggt ggaatggatg
360aagtgtcatt acatgctccc acacaagtgg ctgagttaca ca
40214157DNAProteus mirabilis 14ctgaaacgca tttatgcggg agtcagtgaa
atcatcactc aattttcacc cgatgtattt 60tctgttgaac aagtctttat ggcaaaaaat
gcagactcag cattaaaatt aggccaagca 120agaggtgtgg cgattttagc ggcagtcaat
aatgatc 157151348DNAProteus mirabilis
15tttctcttta aaatcaattc ttaaagaaat tattaataat taacttgata ctgtatgatt
60atacagtata atgagtttca acaagcaaaa tcatatacgt tttaatggta gtgacccatc
120tttatgcttc actgcccaga gggagataac atggctattg atgaaaacaa acaaaaagca
180ttggccgcag cacttggtca aattgaaaag caatttggta aaggttctat catgcgtctg
240ggcgaagacc gttccatgaa cgtagaaact atctctacag gatctttatc attagacgtt
300gctttaggtg caggtggatt gccacgtggc cgtattgttg aaatctatgg ccctgaatct
360tctggtaaaa caaccttgac tctacaagtt attgcctctg ctcagcgtga aggaaaaatt
420tgtgcattta ttgatgctga acatgcatta gacccaattt atgctcaaaa gctaggtgtc
480gatatcgata atctactctg ctctcaacct gacacaggtg aacaagctct ggaaatttgt
540gatgcattat ctcgctctgg tgcggtcgat gttattgtcg tggactccgt ggcagcatta
600acaccaaaag ctgaaattga aggtgaaatt ggtgattcac acgttggttt agccgcacgt
660atgatgagcc aagctatgcg taaactagcg ggtaacctta aaaactctaa tacactgctg
720attttcatta accaaattcg tatgaaaatc ggtgttatgt ttggtaaccc agaaaccacg
780accggtggta atgcgcttaa attctatgct tctgttcgtt tagacattcg tcgcattggc
840tctgtcaaaa atggtgatga agtcattggt agtgagactc gcgttaaagt tgttaaaaat
900aaagtggctg caccgtttaa acaagctgaa ttccaaatta tgtacggtga aggtattaat
960acctatggcg aactgattga tttaggtgtt aaacataagt tagtagagaa agcaggtgct
1020tggtatagct acaatggcga aaaaattggt caaggtaaag ctaacgcaac caattactta
1080aaagaacatc ctgaaatgta caatgagtta aacactaaat tgcgtgaaat gttgttaaat
1140catgctggtg aattcacaag tgctgcggat tttgcaggtg aagagtcaga cagtgatgct
1200gacgacacaa aagagtaatt agctggttgt catgctgttt gtgtgaaaat agaccttaaa
1260tcattggcta ttatcacgac agcatcccat agaataactt gtttgtataa attttattca
1320gatggcaaag gaagccttaa aaaagctt
1348162167DNAPseudomonas aeruginosa 16ggtaccgctg gccgagcatc tgctcgatca
ccaccagccg ggcgacggga actgcacgat 60ctacctggcg agcctggagc acgagcgggt
tcgcttcgta cggcgctgag cgacagtcac 120aggagaggaa acggatggga tcgcaccagg
agcggccgct gatcggcctg ctgttctccg 180aaaccggcgt caccgccgat atcgagcgct
cgcacgcgta tggcgcattg ctcgcggtcg 240agcaactgaa ccgcgagggc ggcgtcggcg
gtcgcccgat cgaaacgctg tcccaggacc 300ccggcggcga cccggaccgc tatcggctgt
gcgccgagga cttcattcgc aaccgggggg 360tacggttcct cgtgggctgc tacatgtcgc
acacgcgcaa ggcggtgatg ccggtggtcg 420agcgcgccga cgcgctgctc tgctacccga
ccccctacga gggcttcgag tattcgccga 480acatcgtcta cggcggtccg gcgccgaacc
agaacagtgc gccgctggcg gcgtacctga 540ttcgccacta cggcgagcgg gtggtgttca
tcggctcgga ctacatctat ccgcgggaaa 600gcaaccatgt gatgcgccac ctgtatcgcc
agcacggcgg cacggtgctc gaggaaatct 660acattccgct gtatccctcc gacgacgact
tgcagcgcgc cgtcgagcgc atctaccagg 720cgcgcgccga cgtggtcttc tccaccgtgg
tgggcaccgg caccgccgag ctgtatcgcg 780ccatcgcccg tcgctacggc gacggcaggc
ggccgccgat cgccagcctg accaccagcg 840aggcggaggt ggcgaagatg gagagtgacg
tggcagaggg gcaggtggtg gtcgcgcctt 900acttctccag catcgatacg cccgccagcc
gggccttcgt ccaggcctgc catggtttct 960tcccggagaa cgcgaccatc accgcctggg
ccgaggcggc ctactggcag accttgttgc 1020tcggccgcgc cgcgcaggcc gcaggcaact
ggcgggtgga agacgtgcag cggcacctgt 1080acgacatcga catcgacgcg ccacaggggc
cggtccgggt ggagcgccag aacaaccaca 1140gccgcctgtc ttcgcgcatc gcggaaatcg
atgcgcgcgg cgtgttccag gtccgctggc 1200agtcgcccga accgattcgc cccgaccctt
atgtcgtcgt gcataacctc gacgactggt 1260ccgccagcat gggcggggga ccgctcccat
gagcgccaac tcgctgctcg gcagcctgcg 1320cgagttgcag gtgctggtcc tcaacccgcc
gggggaggtc agcgacgccc tggtcttgca 1380gctgatccgc atcggttgtt cggtgcgcca
gtgctggccg ccgccggaag ccttcgacgt 1440gccggtggac gtggtcttca ccagcatttt
ccagaatggc caccacgacg agatcgctgc 1500gctgctcgcc gccgggactc cgcgcactac
cctggtggcg ctggtggagt acgaaagccc 1560cgcggtgctc tcgcagatca tcgagctgga
gtgccacggc gtgatcaccc agccgctcga 1620tgcccaccgg gtgctgcctg tgctggtatc
ggcgcggcgc atcagcgagg aaatggcgaa 1680gctgaagcag aagaccgagc agctccagga
ccgcatcgcc ggccaggccc ggatcaacca 1740ggccaaggtg ttgctgatgc agcgccatgg
ctgggacgag cgcgaggcgc accagcacct 1800gtcgcgggaa gcgatgaagc ggcgcgagcc
gatcctgaag atcgctcagg agttgctggg 1860aaacgagccg tccgcctgag cgatccgggc
cgaccagaac aataacaaga ggggtatcgt 1920catcatgctg ggactggttc tgctgtacgt
tggcgcggtg ctgtttctca atgccgtctg 1980gttgctgggc aagatcagcg gtcgggaggt
ggcggtgatc aacttcctgg tcggcgtgct 2040gagcgcctgc gtcgcgttct acctgatctt
ttccgcagca gccgggcagg gctcgctgaa 2100ggccggagcg ctgaccctgc tattcgcttt
tacctatctg tgggtggccg ccaaccagtt 2160cctcgag
2167171872DNAPseudomonas aeruginosa
17gaattcccgg gagttcccga cgcagccacc cccaaaacac tgctaaggga gcgcctcgca
60gggctcctga ggagatagac catgccattt ggcaagccac tggtgggcac cttgctcgcc
120tcgctgacgc tgctgggcct ggccaccgct cacgccaagg acgacatgaa agccgccgag
180caataccagg gtgccgcttc cgccgtcgat cccgctcacg tggtgcgcac caacggcgct
240cccgacatga gtgaaagcga gttcaacgag gccaagcaga tctacttcca acgctgcgcc
300ggttgccacg gcgtcctgcg caagggcgcc accggcaagc cgctgacccc ggacatcacc
360cagcaacgcg gccagcaata cctggaagcg ctgatcacct acggcacccc gctgggcatg
420ccgaactggg gcagctccgg cgagctgagc aaggaacaga tcaccctgat ggccaagtac
480atccagcaca ccccgccgca accgccggag tggggcatgc cggagatgcg cgaatcgtgg
540aaggtgctgg tgaagccgga ggaccggccg aagaaacagc tcaacgacct cgacctgccc
600aacctgttct cggtgaccct gcgcgacgcc gggcagatcg ccctggtcga cggcgacagc
660aaaaagatcg tcaaggtcat cgataccggc tatgccgtgc atatctcgcg gatgtccgct
720tccggccgct acctgctggt gatcggccgc gacgcgcgga tcgacatgat cgacctgtgg
780gccaaggagc cgaccaaggt cgccgagatc aagatcggca tcgaggcgcg ctcggtggaa
840agctccaagt tcaagggcta cgaggaccgc tacaccatcg ccggcgccta ctggccgccg
900cagttcgcga tcatggacgg cgagaccctg gaaccgaagc agatcgtctc cacccgcggc
960atgaccgtag acacccagac ctaccacccg gaaccgcgcg tggcggcgat catcgcctcc
1020cacgagcacc ccgagttcat cgtcaacgtg aaggagaccg gcaaggtcct gctggtcaac
1080tacaaggata tcgacaacct caccgtcacc agcatcggtg cggcgccgtt cctccacgac
1140ggcggctggg acagcagcca ccgctacttc atgaccgccg ccaacaactc caacaaggtt
1200gccgtgatcg actccaagga ccgtcgcctg tcggccctgg tcgacgtcgg caagaccccg
1260cacccggggc gtggcgccaa cttcgtgcat cccaagtacg gcccggtgtg gagcaccagc
1320cacctgggcg acggcagcat ctcgctgatc ggcaccgatc cgaagaacca tccgcagtac
1380gcctggaaga aagtcgccga actacagggc cagggcggcg gctcgctgtt catcaagacc
1440catccgaagt cctcgcacct ctacgtcgac accaccttca accccgacgc caggatcagc
1500cagagcgtcg cggtgttcga cctgaagaac ctcgacgcca agtaccaggt gctgccgatc
1560gccgaatggg ccgatctcgg cgaaggcgcc aagcgggtgg tgcagcccga gtacaacaag
1620cgcggcgatg aagtctggtt ctcggtgtgg aacggcaaga acgacagctc cgcgctggtg
1680gtggtggacg acaagaccct gaagctcaag gccgtggtca aggacccgcg gctgatcacc
1740ccgaccggta agttcaacgt ctacaacacc cagcacgacg tgtactgaga cccgcgtgcg
1800gggcacgccc cgcacgctcc cccctacgag gaaccgtgat gaaaccgtac gcactgcttt
1860cgctgctcgc ca
1872183451DNAPseudomonas aeruginosa 18tcgagacggg aagccactct ctacgagaag
acagaagccc ctcacagagg cctctgtcta 60cgcctactaa agctcggctt attcatatgt
atttatattc tttcaataga tcactcagcg 120ctattttaag ttcaccctct gtaagttcac
ctgggcgctc tttctttcct tcggtaaagc 180tgtcggccag accaaacatt aaactcaagc
atctcccaag cgatgcatca tcttgggcca 240gcatccctga atcgcgcgtc ggacctccaa
gtcttaaaaa attcttcgct gaaggttttc 300ccatcaatcg atgaggctaa tagcttcttt
gcaatatcta tcatttccat gctcacctta 360aagcacctca tttttcatgt aaaaattgta
ttgatccgtg ccagactcaa tcctccaccc 420agaaacaaac atcccatcct ctccaatgat
aacaacaata ttagtcctgg cattgtaatg 480tacttttgag tttacttcgg agtggtaagt
ccctttttct acggttgcag gatcagcaag 540gtgctcaaga attttatccc taaactctgc
aagcgttcca ttgttggcgc ttttttcacc 600cagcccaaaa tcatatttgt ggctatcaaa
ttttttctgt agttgcctcc gtgtgaagat 660accactatca agaggactac tgagcattac
ataaacaggt ttgactccag aatccgccgg 720gaaaatcacg atcagatcgt ttaggtccag
tagcattccc ggataggact ccgggccggt 780cttcaacggt gtgagggccg ctccctcata
taccggcacc ggcttcggta tgaccggagt 840ggtactcgaa gggttctggt ttcctggagg
actcgccggc gtccaagtca ggatcagtgg 900cggcgcttct gcgaccgtag agggaaccgt
aacctcgtac agtcctgttg cggcgttata 960ggccccatcc ggaccggaac gctttcggaa
cgctcacacc atcggtctga ccaccgaaag 1020gtcgtcgtgt tgcctcgcgc ctcgttggtc
aggcgcatcg gcagatcgac ggtaccgctg 1080gcttttgcaa ccgcgttcag gtttacgctt
gggggaagcc ccaatttagc ggcatccatg 1140cccagggcgt aacgaacgct atcgggcgtt
tggtcctgcc attgctcggc agtccgggag 1200agtaggtcag actggcaagc cacggccatc
accgaggtgc tgaagccagg accgccagga 1260cggcaatcgc atcggagatc gcttgagcaa
gggatgcggc gcctgtgcga cctggatcag 1320accccgctgc ggcggtggcg cacccgctgc
cattggctgg catggcataa gtattggcag 1380ccctgatcgc cgcttgacga gcgatttcct
tgcgccttgc cgtttcggcg ttcagcttgt 1440ccagccgtgc ttgcaggctg gcgatttcat
ccactaggta ggacatcggc gttgtaggtt 1500gccttttgtt tctccagtgc attgggtgcc
ttggcaatca aggcattgtt tgcagtctgc 1560aattcttctt attgcgatcg cctgcgtaag
gagttgagta gcgcgttcaa gccactgctc 1620tggcgttgga ttggtcagtt gaggcaaagc
attcccagcc tggtcaagct cggactgcac 1680ttttttctcg acatttgcct tcctggcctt
gtagtccgcc tccacctcag cagcggctcg 1740ctgggcttct gcttccaatg accgggcttt
attctccagc tcttgagacg tttgtttcaa 1800gatagcgatt tgcgccttat agatatcggc
gctgtacgct ttggccagct cactcatatg 1860gcgatccagg aactctccat agaattttcg
gctggccagc aactgactct ggtacatcga 1920ctctgacttc tgaggaaagt ctgaagccgt
ataaagattg gccgggcgat cctcaatgac 1980ctttagcgat tttgctttgg catccatgag
tgcatcaacg atactctttt catcgcggat 2040gtcattggca ctgaccgctt tacctggcaa
ccccgcttca ctcttgagtt catcaacctc 2100cttcagggtt tcatttttca ggtttttctt
gagttctgaa tgggacttat caagcgtact 2160tcttagcttc ctgtactcct gcattccagt
accgacatac ggacttggtc ctggtgggac 2220aaatggtgga gtaccgtagc ttgatcgagc
aggaatatac tggattatgt cacgcccacc 2280accctgcaca tgtgtaataa ccatcgaacc
aggttcgtaa tcattgacag ccatagatcg 2340cccctacatt aatttgaaag tgtaatgtat
tgagcgactc ccacctagag aaccctctcc 2400cagtcaataa gccccaatgc atcggcaata
cactgcaatc aacttcaata tcccgtgttt 2460agatgatcca gaaggtgcgc tctctcgcct
cttataatcg cgcctgcgtc aaacggtcat 2520ttccttaacg cacacctcat ctaccccggc
cagtcacgga agccgcatac cttcggttca 2580ttaacgaact cccactttca aaattcatcc
atgccgcccc ttcgcgagct tccggacaaa 2640gccacgctga ttgcgagccc agcgtttttg
attgcaagcc gctgcagctg gtcaggccgt 2700ttccgcaacg cttgaagtcc tggccgatat
accggcaggg ccagccatcg ttcgacgaat 2760aaagccacct cagccatgat gccctttcca
tccccagcgg aaccccgaca tggacgccaa 2820agccctgctc ctcggcagcc tctgcctggc
cgccccattc gccgacgcgg cgacgctcga 2880caatgctctc tccgcctgcc tcgccgcccg
gctcggtgca ccgcacacgg cggagggcca 2940gttgcacctg ccactcaccc ttgaggcccg
gcgctccacc ggcgaatgcg gctgtacctc 3000ggcgctggtg cgatatcggc tgctggccag
gggcgccagc gccgacagcc tcgtgcttca 3060agagggctgc tcgatagtcg ccaggacacg
ccgcgcacgc tgaccctggc ggcggacgcc 3120ggcttggcga gcggccgcga actggtcgtc
accctgggtt gtcaggcgcc tgactgacag 3180gccgggctgc caccaccagg ccgagatgga
cgccctgcat gtatcctccg atcggcaagc 3240ctcccgttcg cacattcacc actctgcaat
ccagttcata aatcccataa aagccctctt 3300ccgctccccg ccagcctccc cgcatcccgc
accctagacg ccccgccgct ctccgccggc 3360tcgcccgaca agaaaaacca accgctcgat
cagcctcatc cttcacccat cacaggagcc 3420atcgcgatgc acctgatacc ccattggatc c
345119744DNAPseudomonas aeruginosa
19gggttcagca agcgttcagg ggcggttcag taccctgtcc gtactctgca agccgtgaac
60gacacgactc tcgcagaacg gagaaacacc atgaaagcac tcaagactct cttcatcgcc
120accgccctgc tgggttccgc cgccggcgtc caggccgccg acaacttcgt cggcctgacc
180tggggcgaga ccagcaacaa catccagaaa tccaagtcgc tgaaccgcaa cctgaacagc
240ccgaacctcg acaaggtgat cgacaacacc ggcacctggg gcatccgcgc cggccagcag
300ttcgagcagg gccgctacta cgcgacctac gagaacatct ccgacaccag cagcggcaac
360aagctgcgcc agcagaacct gctcggcagc tacgacgcct tcctgccgat cggcgacaac
420aacaccaagc tgttcggcgg tgccaccctc ggcctggtca agctggaaca ggacggcaag
480ggcttcaagc gcgacagcga tgtcggctac gctgccgggc tgcaggccgg tatcctgcag
540gagctgagca agaatgcctc gatcgaaggc ggctatcgtt acctgcgcac caacgccagc
600accgagatga ccccgcatgg cggcaacaag ctgggctccc tggacctgca cagcagctcg
660caattctacc tgggcgccaa ctacaagttc taaatgaccg cgcagcgccc gcgagggcat
720gcttcgatgg ccgggccgga aggt
744202760DNAPseudomonas aeruginosa 20ctgcagctgg tcaggccgtt tccgcaacgc
ttgaagtcct ggccgatata ccggcagggc 60cagccatcgt tcgacgaata aagccacctc
agccatgatg ccctttccat ccccagcgga 120accccgacat ggacgccaaa gccctgctcc
tcggcagcct ctgcctggcc gccccattcg 180ccgacgcggc gacgctcgac aatgctctct
ccgcctgcct cgccgcccgg ctcggtgcac 240cgcacacggc ggagggccag ttgcacctgc
cactcaccct tgaggcccgg cgctccaccg 300gcgaatgcgg ctgtacctcg gcgctggtgc
gatatcggct gctggccagg ggcgccagcg 360ccgacagcct cgtgcttcaa gagggctgct
cgatagtcgc caggacacgc cgcgcacgct 420gaccctggcg gcggacgccg gcttggcgag
cggccgcgaa ctggtcgtca ccctgggttg 480tcaggcgcct gactgacagg ccgggctgcc
accaccaggc cgagatggac gccctgcatg 540tatcctccga tcggcaagcc tcccgttcgc
acattcacca ctctgcaatc cagttcataa 600atcccataaa agccctcttc cgctccccgc
cagcctcccc gcatcccgca ccctagacgc 660cccgccgctc tccgccggct cgcccgacaa
gaaaaaccaa ccgctcgatc agcctcatcc 720ttcacccatc acaggagcca tcgcgatgca
cctgataccc cattggatcc ccctggtcgc 780cagcctcggc ctgctcgccg gcggctcgtc
cgcgtccgcc gccgaggaag ccttcgacct 840ctggaacgaa tgcgccaaag cctgcgtgct
cgacctcaag gacggcgtgc gttccagccg 900catgagcgtc gacccggcca tcgccgacac
caacggccag ggcgtgctgc actactccat 960ggtcctggag ggcggcaacg acgcgctcaa
gctggccatc gacaacgccc tcagcatcac 1020cagcgacggc ctgaccatcc gcctcgaagg
cggcgtcgag ccgaacaagc cggtgcgcta 1080cagctacacg cgccaggcgc gcggcagttg
gtcgctgaac tggctggtac cgatcggcca 1140cgagaagccc tcgaacatca aggtgttcat
ccacgaactg aacgccggca accagctcag 1200ccacatgtcg ccgatctaca ccatcgagat
gggcgacgag ttgctggcga agctggcgcg 1260cgatgccacc ttcttcgtca gggcgcacga
gagcaacgag atgcagccga cgctcgccat 1320cagccatgcc ggggtcagcg tggtcatggc
ccagacccag ccgcgccggg aaaagcgctg 1380gagcgaatgg gccagcggca aggtgttgtg
cctgctcgac ccgctggacg gggtctacaa 1440ctacctcgcc cagcaacgct gcaacctcga
cgatacctgg gaaggcaaga tctaccgggt 1500gctcgccggc aacccggcga agcatgacct
ggacatcaaa cccacggtca tcagtcatcg 1560cctgcacttt cccgagggcg gcagcctggc
cgcgctgacc gcgcaccagg cttgccacct 1620gccgctggag actttcaccc gtcatcgcca
gccgcgcggc tgggaacaac tggagcagtg 1680cggctatccg gtgcagcggc tggtcgccct
ctacctggcg gcgcggctgt cgtggaacca 1740ggtcgaccag gtgatccgca acgccctggc
cagccccggc agcggcggcg acctgggcga 1800agcgatccgc gagcagccgg agcaggcccg
tctggccctg accctggccg ccgccgagag 1860cgagcgcttc gtccggcagg gcaccggcaa
cgacgaggcc ggcgcggcca acgccgacgt 1920ggtgagcctg acctgcccgg tcgccgccgg
tgaatgcgcg ggcccggcgg acagcggcga 1980cgccctgctg gagcgcaact atcccactgg
cgcggagttc ctcggcgacg gcggcgacgt 2040cagcttcagc acccgcggca cgcagaactg
gacggtggag cggctgctcc aggcgcaccg 2100ccaactggag gagcgcggct atgtgttcgt
cggctaccac ggcaccttcc tcgaagcggc 2160gcaaagcatc gtcttcggcg gggtgcgcgc
gcgcagccag gacctcgacg cgatctggcg 2220cggtttctat atcgccggcg atccggcgct
ggcctacggc tacgcccagg accaggaacc 2280cgacgcacgc ggccggatcc gcaacggtgc
cctgctgcgg gtctatgtgc cgcgctcgag 2340cctgccgggc ttctaccgca ccagcctgac
cctggccgcg ccggaggcgg cgggcgaggt 2400cgaacggctg atcggccatc cgctgccgct
gcgcctggac gccatcaccg gccccgagga 2460ggaaggcggg cgcctggaga ccattctcgg
ctggccgctg gccgagcgca ccgtggtgat 2520tccctcggcg atccccaccg acccgcgcaa
cgtcggcggc gacctcgacc cgtccagcat 2580ccccgacaag gaacaggcga tcagcgccct
gccggactac gccagccagc ccggcaaacc 2640gccgcgcgag gacctgaagt aactgccgcg
accggccggc tcccttcgca ggagccggcc 2700ttctcggggc ctggccatac atcaggtttt
cctgatgcca gcccaatcga atatgaattc 276021172DNAStaphylococcus
saprophyticus 21ttgatgaaat gcatcgatta ataaattttc atgtacgatt aaaacgtttt
tacccttacc 60ttttcgtact acctctgcct gaagttgacc acctttaaag tgattcgttg
aaatccatta 120tgctcattat taatacgatc tataaaaaca aatggaatgt gatgatcgat
ga 17222155DNAStaphylococcus saprophyticus 22gttccattga
ctctgtatca cctgttgtaa cgaacatcca tatgtcctga aactccaacc 60acaggtttga
ccacttccaa tttcagacca ccaagtttga cacgtgaaga ttcatcttct 120aatatttcgg
aattaatatc atattattta aatag
15523145DNAStaphylococcus saprophyticus 23acatagaaaa actcaaaaga
tttacttttt tcaaatggaa aataagggta cacacgatat 60ttcccgtcat cttcagttac
cggtacaaca tcctctttat taacctgcac ataatctgac 120tccgcttcac tcatcaaact
actaa 14524266DNAStaphylococcus
saprophyticus 24tttcactgga attacatttc gctcattacg tacagtgaca atcgcgtcag
atagtttctt 60ctggttagct tgactcttaa caatcttgtc taaattttgt ttaattcttt
gattcgtact 120agaaatttta cttctaattc cttgtaattc ataacttgca ttatcatata
aatcataagt 180atcacatttt tgatgaatac tttgatataa atctgacaat acaggcagtt
gctccattct 240atcgttaaga atagggtaat taatag
26625845DNAHaemophilus influenzae 25tgttaaattt ctttaacagg
gattttgtta tttaaattaa acctattatt ttgtcgcttc 60tttcactgca tctactgctt
gagttgcttt ttctgaaacc gcctctttca tttcacttgc 120tttttctgat gctgcttctt
tcatttcgcc tactttttct gacgctgctt ctgttgctga 180tttaattact tctttcgcat
cttccacttt ctctgctact ttatttttca cgtctgtaga 240aagctgctgt gctttttcct
ttacttcagt cattgtatta gctgcagcat cttttgtttc 300tgatgcgact gatgctacag
tttgcttcgt atcctcaact ttttgttttg cttcttgctt 360atcaaaacaa cctgtcacga
ctaaagctga acctaaaacc aatgctaatg ttaatttttt 420cattattttc tccatagaat
aatttgattg ttacaaagcc ctattacttt gatgcagttt 480agtttacggg aattttcata
aaaagaaaaa cagtaatagt aaaactttac ctttctttaa 540aaagattact ttataaaaaa
acatctaaga tattgatttt taatagatta taaaaaacca 600ataaaaattt tattttttgt
aaaaaaaaag aatagtttat tttaaataaa ttacaggaga 660tgcttgatgc atcaatattt
ctgatttatt accatcccat aataattgag caatagttgc 720aggataaaat gatattggat
ttcgttttcc atacagttca gcaacaattt ctcccactaa 780gggcaaatgg gaaacaatta
atacagattt aacgccctcg tcttttagca cttctaaata 840atcaa
845261598DNAHaemophilus
influenzae 26gaatagagtt gcactcaata gattcgggct ttataattgc ccagattttt
atttataaca 60aagggttcca aatgaaaaaa tttaatcaat ctctattagc aactgcaatg
ttgttggctg 120caggtggtgc aaatgcggca gcgtttcaat tggcggaagt ttctacttca
ggtcttggtc 180gtgcctatgc gggtgaagcg gcgattgcag ataatgcttc tgtcgtggca
actaacccag 240ctttgatgag tttatttaaa acggcacagt tttccacagg tggcgtttat
attgattcta 300gaattaatat gaatggtgat gtaacttctt atgctcagat aataacaaat
cagattggaa 360tgaaagcaat aaaggacggc tcagcttcac agcgtaatgt tgttcccggt
gcttttgtgc 420caaatcttta tttcgttgcg ccagtgaatg ataaattcgc gctgggtgct
ggaatgaatg 480tcaatttcgg tctaaaaagt gaatatgacg atagttatga tgctggtgta
tttggtggaa 540aaactgactt gagtgctatc aacttaaatt taagtggtgc ttatcgagta
acagaaggtt 600tgagcctagg tttaggggta aatgcggttt atgctaaagc ccaagttgaa
cggaatgctg 660gtcttattgc ggatagtgtt aaggataacc aaataacaag cgcactctca
acacagcaag 720aaccattcag agatcttaag aagtatttgc cctctaagga caaatctgtt
gtgtcattac 780aagatagagc cgcttggggc tttggctgga atgcaggtgt aatgtatcaa
tttaatgaag 840ctaacagaat tggtttagcc tatcattcta aagtggacat tgattttgct
gaccgcactg 900ctactagttt agaagcaaat gtcatcaaag aaggtaaaaa aggtaattta
acctttacat 960tgccagatta cttagaactt tctggtttcc atcaattaac tgacaaactt
gcagtgcatt 1020atagttataa atatacccat tggagtcgtt taacaaaatt acatgccagc
ttcgaagatg 1080gtaaaaaagc ttttgataaa gaattacaat acagtaataa ctctcgtgtt
gcattagggg 1140caagttataa tctttatgaa aaattgacct tacgtgcggg tattgcttac
gatcaagcgg 1200catctcgtca tcaccgtagt gctgcaattc cagataccga tcgcacttgg
tatagtttag 1260gtgcaaccta taaattcacg ccgaatttat ctgttgatct tggctatgct
tacttaaaag 1320gcaaaaaagt tcactttaaa gaagtaaaaa caataggtga caaacgtaca
ttgacattga 1380atacaactgc aaattatact tctcaagcac acgcaaatct ttacggtttg
aatttaaatt 1440atagtttcta atccgttaaa aaatttagca taataaagca caattccaca
ctaagtgtgc 1500ttttctttta taaaacaagg cgaaaaatga ccgcacttta ttacacttat
tacccctcgc 1560cagtcggacg gcttttgatt ttatctgacg gcgaaaca
1598279100DNAHaemophilus influenzae 27gtcaaaaatt gcgtgcattc
tagcgaaaaa atgggctttt gggaactgtg ggatttattt 60aaaatcttag aaaatcttac
cgcactttta agctataaag tgcggtgaaa tttagtggcg 120tttataatgg agaattactc
tggtgtaatc cattcgactg tccagcttcc agtaccttct 180ggaactaatg tttttgtgag
ataaggcaaa atttctttca tttgggtttc taatgtccaa 240ggtggattaa ttaccaccat
accgctcgca gtcattcctc gttgatcgct atctgggcga 300acggcgagtt caatttttag
aatttttcta attcccgttg cttctaaacc cttaaaaata 360cgtttagttt gttggcgtaa
tacaacagga taccaaatcg cataagtgcc agtggcaaaa 420cgtttatagc cctcttcaat
ggctttaaca acgagatcat aatcatcttt taattcataa 480ggcggatcga tgagtactaa
gcctcggcgt tcttttggcg gaagcgttgc tttgacttgt 540tgaaagccat tgtcacattt
tacggtgaca tttttgtcgt cgctaaaatt attgcgaaga 600attggataat cgctaggatg
aagctcggtc aatagtgcgc gatcttgtga gcgcaacaat 660tccgcggcaa ttaatggaga
acccgcgtaa taacgtagtt ctttgccacc ataattgagt 720tttttgatca tttttacata
acgagcaata tcttcgggta aatctgtttg atcccacagg 780cgtccaatac cttctttata
ttcccccgtt ttttctgatt catttgagga taaacgataa 840cgccccacac cagagtgcgt
atccaaataa aaaaagcctt tttctttgag tttaagattt 900tccaaaatga gcattaaaac
aatatgtttc aagacatcgg catgattgcc agcgtgaaat 960gagtgatgat aactcagcat
aatatattcc ttatatattc cttatttgtt taataacgaa 1020ggcgagccaa ttgactcgcc
cgattacaca ctaaagtgcg gtcattttta gaagagttct 1080tgtggttgcg tcgctggcgt
attgccttca ttatttaagc gttgctgtaa ctcagtagga 1140acataataac cacgctcttg
catttccgaa agataggtac gtgtcggttc tgttcccgca 1200ataaaatatt ctttgcgccc
accgtttgga gaaagcaaac ctgtcaaagt atcaatgttt 1260ttttccacaa tttttggcgg
tagcgacaat ttacgttctg gcttatcact caaagccgtt 1320ttcatataag tgatccaagc
aggcattgct gtttttgctc ctgcttctcc acgcccaagt 1380actcgtttgt tatcatcaaa
cccgacataa gttgtggtta ctaagtttgc accaaatccc 1440gcataccaag ccacttttga
actgttggta gtacctgttt taccgcctat atcgctacgt 1500ttaatgcttt gtgcaatacg
ccagctggtg cctttccagt ctaaaccttg ttcgccataa 1560attgccgtat ttaaggcact
acgaatgaga aaagcaagtt cgccactaat gacacgtggc 1620gcatattcta ttttcgacga
agcatttttt gcagcagcca ttaaatcaat cgcatcttct 1680ttaagtgcgg tcatatttga
ttgtaattct ggcagttcag gcacagtttc aggttgttga 1740tctaattctt cgccattggt
gctgtcatct gttggtttta aggcattctc gcctaaagga 1800atattggcaa agccgttgat
tttgtctttg gtttcgccat aaattacagg tatatcatta 1860cattcaatgc aagcaatttt
agggtttgca ataaataagt ctttacccgt gttatcttga 1920attttttcaa tgatataagg
ttcaatgagg aagccaccat tatcaaacac cgcataagct 1980cgcgccattt ctaatggtgt
gaaagaggct gcgccaagtg ctaaggcttc actggcaaaa 2040tattgatcac gtttaaaacc
aaaacgttgt aaaaattctg ctgtgaaatc aatacctgcc 2100gtttggatag cacgaatagc
aattatattt ttggattgac ctaatcctac gcgtaaacgc 2160atcgggccat cataacgatc
aggcgagttt ttcggttgcc acattttttg tcccggtttt 2220tgaatagaaa tcgggctgtc
ttgtaatacg cttgaaagtg ttaagccttt ttctaatgct 2280gccgcgtaaa taaatggttt
gatagaagaa cccacttgaa ctaaagactg tgtggctcga 2340ttgaatttac tttgttcata
gctaaagcca ccgaccactg cttcaatcgc accattatct 2400gaattaagag aaactaatgc
tgaatttgct gcgggaattt gtcctaattg ccattcccca 2460ttagcacgct gatgaatcca
aatttgctcg ccgactttca caggattgct tctgcctgtc 2520caacgcattg cattggttga
taaggtcatt ttttccccag aagcgagcaa tatatcagca 2580ccgcctttta caattccaat
cactgccgca ggaataaatg gctctgaatc aggtagtttg 2640cgtagaaaac cgacaatgcg
atcattgtcc caagcggctt catttttttg ccataatggc 2700gcgccaccgc gataaccgtg
acgcatatcg taatcaatca agttattacg cacagctttt 2760tgggcttcag cttggtcttt
tgaaagtaca gtggtaaata ctttataacc actggtgtaa 2820gcattttctt cgccaaaacg
acgcaccatt tcttgacgca ccatttcagt gacataatcg 2880gctcgaaatt caaattttgc
gccgtgatag ctcgccacaa tcggctcttt caatgcagca 2940tcatattctt ctttgctgat
gtatttttca tctaacatac ggcttagcac cacattgcgg 3000cgttcttctg aacgttttaa
agaataaagc gggttcattg ttgaaggtgc tttaggtaaa 3060ccagcaataa tcgccatttc
cgataaggtc aattcattca atgatttacc gaaataggtt 3120tgtgctgccg ctgcaacacc
ataagaacga tagcctaaaa agattttgtt taaataaagc 3180tctaatattt cttgtttgtt
gagagtattt tcgatttcta ccgcaagcac ggcttcacga 3240gctttacgaa taatggtttt
ttctgaggtt aagaaaaagt tacgcgctaa ttgttgagta 3300atcgtacttg cgccttgtga
tgcaccgcca ttactcactg cgacaaacaa tgcacgggca 3360atgccgatag ggtctaatcc
gtgatgatcg taaaaacgac tgtcttccgt cgctaaaaat 3420gcgtcaatta agcgttgtgg
cacatcggct aatttcactg gaatacggcg ttgctcaccc 3480acttcgccaa ttaatttacc
gtcagccgta taaatctgca ttggttgctg taattcaacg 3540gtttttaatg tttctactga
gggcaattca gattttaagt ggaaatacaa cattccgcct 3600gctactaaac ctaaaataca
taaagttaat agggtgttta atattaattt tgcgatccgc 3660atcgtaaaat tctcgcttcg
ttaatgaata ttcttgtcaa gagacctatg atttggctgt 3720taagtataaa agattcagcc
tttaaagaat aggaaagaat atgcaattct ccctgaaaaa 3780ttaccgcact ttacaaatcg
gcattcatcg taagcagagt tattttgatt ttgtgtggtt 3840tgatgatctc gaacagccac
aaagttatca aatctttgtt aatgatcgtt attttaaaaa 3900tcgtttttta caacagctaa
aaacacaata tcaagggaaa acctttcctt tgcagtttgt 3960agcaagcatt cccgcccact
taacttggtc gaaagtatta atgttgccac aagtgttaaa 4020tgcgcaagaa tgtcatcaac
aatgtaaatt tgtgattgaa aaagagctgc ctattttttt 4080agaagaattg tggtttgatt
atcgttctac cccgttaaag caaggttttc gattagaggt 4140tactgcaatt cgtaaaagta
gcgctcaaac ttatttgcaa gattttcagc catttaatat 4200taatatattg gatgttgcgt
caaatgctgt tttgcgtgca tttcaatatc tgttgaatga 4260acaagtgcgg tcagaaaata
ccttattttt atttcaagaa gatgactatt gcttggcgat 4320ttgtgaaaga tctcagcaat
cacaaatttt acaatctcac gaaaatttga ccgcacttta 4380tgaacaattt accgaacgtt
ttgaaggaca acttgaacaa gtttttgttt atcaaattcc 4440ctcaagtcat acaccattac
ccgaaaactg gcagcgagta gaaacagaac tcccttttat 4500tgcgctgggc aacgcgctat
ggcaaaaaga tttacatcaa caaaaagtgg gtggttaaat 4560gtcgatgaat ttattgcctt
ggcgtactta tcaacatcaa aagcgtttac gtcgtttagc 4620tttttatatc gctttattta
tcttgcttgc tattaattta atgttggctt ttagcaattt 4680gattgaacaa cagaaacaaa
atttgcaggc acagcaaaag tcgtttgaac aacttaatca 4740acagcttcat aaaactacca
tgcaaattga tcagttacgc attgcggtga aagttggtga 4800agttttgaca tctattccca
acgagcaagt aaaaaagagt ttacaacagc taagtgaatt 4860accttttcaa caaggagaac
tgaataaatt taaacaagat gccaataact taagcttgga 4920aggtaacgcg caagatcaaa
cagaatttga actgattcat caatttttaa agaaacattt 4980tcccaatgtg aaattaagtc
aggttcaacc tgaacaagat acattgtttt ttcactttga 5040tgtggaacaa ggggcggaaa
aatgaaagct ttttttaacg atccttttac tccttttgga 5100aaatggctaa gtcagccttt
ttatgtgcac ggtttaacct ttttattgct attaagtgcg 5160gtgatttttc gccccgtttt
agattatata gaggggagtt cacgtttcca tgaaattgaa 5220aatgagttag cggtgaaacg
ttcagaattg ttgcatcaac agaaaatttt aacctcttta 5280caacagcagt cggaaagtcg
aaaactttct ccagaactgg ctgcacaaat tattcctttg 5340aataaacaaa ttcaacgttt
agctgcgcgt aacggtttat ctcagcattt acgttgggaa 5400atggggcaaa agcctatttt
gcatttacag cttacaggtc attttgaaaa aacgaagaca 5460tttttatccg cacttttggc
taattcgtca cagctttctg taagtcggtt gcaatttatg 5520aaacccgaag acggcccatt
gcaaaccgag atcatttttc agctagataa ggaaacaaaa 5580tgaaacattg gtttttcctg
attatattat tttttatgaa ttgcagttgg ggacaagatc 5640ctttcgataa aacacagcgt
aaccgttctc agtttgataa cgcacaaaca gtaatggagc 5700aaacagaaat aatttcctca
gatgtgccta ataatctatg cggagcggat gaaaatcgcc 5760aagcggctga aattcctttg
aacgctttaa aattggtggg ggtagtgatt tctaaagata 5820aagcctttgc cttgttgcaa
gatcaaggtt tgcaagttta cagcgtttta gagggcgttg 5880atgtggctca agagggctat
attgtagaaa aaatcaacca aaacaatgtt caatttatgc 5940gtaagctagg agagcaatgt
gatagtagtg aatggaaaaa attaagtttt taaaggaaga 6000ttatgaagaa atatttttta
aagtgcggtt attttttagt atgtttttgt ttgccattaa 6060tcgtttttgc taatcctaaa
acagataacg aacgtttttt tattcgttta tcgcaagcac 6120ctttagctca aacactggag
caattagctt ttcaacaaga tgtgaattta gtgattggag 6180atatattgga aaacaagatc
tctttgaaat taaacaatat tgatatgcca cgtttgctac 6240aaataatcgc aaaaagtaag
catcttactt tgaataaaga tgatgggatt tattatttaa 6300acggcagtca atctggcaaa
ggtcaggttg caggaaatct tacgacaaat gaaccgcact 6360tagtgagtca cacggtaaaa
ctccattttg ctaaagcttc tgaattaatg aaatccttaa 6420caacaggaag tggctctttg
ctttctcccg ctgggagcat tacctttgat gatcgcagta 6480atttgctggt tattcaggat
gaacctcgtt ctgtgcaaaa tatcaaaaaa ctgattgctg 6540aaatggataa gcctattgaa
cagatcgcta ttgaagcgcg aattgtgaca attacggatg 6600agagtttgaa agaacttggc
gttcggtggg ggatttttaa tccaactgaa aatgcaagac 6660gagttgcggg cagccttaca
ggcaatagct ttgaaaatat tgcggataat cttaatgtaa 6720attttgcgac aacgacgaca
cctgctggct ctatagcatt acaagtcgcc aaaattaatg 6780ggcgattgct tgatttagaa
ttgagtgcgt tggagcgtga aaataatgta gaaattattg 6840caagccctcg cttactcact
accaataaga aaagtgcgag cattaaacag gggacagaaa 6900ttccttacat cgtgagtaat
actcgtaacg atacgcaatc tgtggaattt cgtgaggcgg 6960tgcttggttt ggaagtgacg
ccacatattt ctaaagataa caatatctta cttgatttat 7020tggtaagtca aaattcccct
ggttctcgtg tcgcttatgg acaaaatgag gtggtttcta 7080ttgataaaca agaaattaat
actcaggttt ttgccaaaga tggggaaacc attgtgcttg 7140gcggcgtatt tcacgataca
atcacgaaaa gcgaagataa agtgccattg cttggcgata 7200tacccgttat taaacgatta
tttagcaaag aaagtgaacg acatcaaaaa cgtgagctag 7260tgattttcgt cacgccacat
attttaaaag caggagaaaa cgttagaggc gttgaaacaa 7320aaaagtgagg gtaaaaaata
actttttaaa tgatgaattt ttttaatttt cgctgtatcc 7380actgtcgtgg caatcttcat
atcgcaaaaa atgggttatg ttcaggttgc caaaaacaaa 7440ttaaatcttt tccttattgc
ggtcattgtg gttcggaatt gcaatattat gcgcagcatt 7500gtgggaattg tcttaaacaa
gaaccaagtt gggataagat ggtcattatt gggcattata 7560ttgaacctct ttcgatattg
attcagcgtt ttaaatttca aaatcaattt tggattgacc 7620gcactttagc tcggctttta
tatcttgcgg tacgtgatgc taaacgaacg catcaactta 7680aattgccaga ggcaatcatt
ccagtgcctt tatatcattt tcgtcagtgg cgacggggtt 7740ataatcaggc agatttatta
tctcagcaat taagtcgttg gctggatatt cctaatttga 7800acaatatcgt aaagcgtgtg
aaacacacct atactcaacg tggtttgagt gcaaaagatc 7860gtcgtcagaa tttaaaaaat
gccttttctc ttgctgtttc gaaaaatgaa tttccttatc 7920gtcgtgttgc gttggtggat
gatgtgatta ctactggttc tacactcaat gaaatctcaa 7980aattgttgcg aaaattaggt
gtggaggaga ttcaagtgtg ggggctggca cgagcttaat 8040ataaagcact ggaaaaaaaa
gcgcgataag cgtattattc ccgatacttt ctctcaagta 8100tttaggacat aattatggaa
caagcaaccc agcaaatcgc tatttctgat gccgcacaag 8160cgcattttcg aaaactttta
gacacccaag aagaaggaac gcatattcgt attttcgcgg 8220ttaatcctgg tacgcctaat
gcggaatgtg gcgtatctta ttgccccccg aatgccgtgg 8280aagaaagcga tattgaaatg
aaatataata ctttttctgc atttattgat gaagtgagtt 8340tgcctttctt agaagaagca
gaaattgatt atgttaccga agagcttggt gcgcaactga 8400ccttaaaagc accgaatgcc
aaaatgcgta aggtggctga tgatgcgcca ttgattgaac 8460gtgttgaata tgtaattcaa
actcaaatta acccacagct tgcaaatcac ggtggacgta 8520taaccttaat tgaaattact
gaagatggtt acgcagtttt acaatttggt ggtggctgta 8580acggttgttc aatggtggat
gttacgttaa aagatggggt agaaaaacaa cttgttagct 8640tattcccgaa tgaattaaaa
ggtgcaaaag atataactga gcatcaacgt ggcgaacatt 8700cttattatta gtgagttata
aaagaagatt tataatgacc gcacttttga aagtgcggtt 8760atttttatgg agaaaaaatg
aaaatacttc aacaagatga ttttggttat tggttgctta 8820cacaaggttc taatctgtat
ttagtgaata atgaattgcc ttttggtatc gctaaagata 8880ttgatttgga aggattgcag
gcaatgcaaa ttggggaatg gaaaaattat ccgttgtggc 8940ttgtggctga gcaagaaagt
gatgaacgag aatatgtgag tttgagtaac ttgctttcac 9000tgccagagga tgaattccat
atattaagcc gaggtgtgga aattaatcat tttctgaaaa 9060cccataaatt ctgtggaaag
tgcggtcata aaacacaaca 910028525DNAMoraxella
catarrhalis 28aaaaatcgac tgccgtcatt ttcaaccacc acatagctca tattcgcaag
ccaatgtatt 60gaccgttggg aataataaca gccccaaaac aatgaaacat atggtgatga
gccaaacata 120ctttcctgca gattttggaa tcatatcgcc atcagcacca gtatggtttg
accagtattt 180aacgccatag acatgtgtaa aaaaattaaa taacggtgca agcatgagac
caacggcacc 240tgatgtacct tgtacgatga cctcacctgc tgtggcaacc ataccaagtc
cattgcctgt 300gatatttttg cgaaaagaca aacttaccac acagaccaag ccgatgattg
agatgacaaa 360ataaaaccaa tccaaatgcg tgtgagctgt tgtggtccaa aatccagtaa
atagtgcaat 420aaatccgcaa acaaaccaaa gtagcaccca gcttgttgtc caatcttttt
taccaaagcc 480tgtgatgtta tctaaaatat caattttcat cagattttcc ctaat
52529466DNAMoraxella catarrhalis 29taatgataac cagtcaagca
agctcaaatc agggtcagcc tgttttgagc tttttatttt 60ttgatcatca tgcttaagat
tcactctgcc atttttttac aacctgcacc acaagtcatc 120atcgcatttg caaaaatggt
acaaacaagc cgtcagcgac ttaaacaaaa aaaggctcaa 180tctgcgtgtg tgcgttcact
tttacaaatc accatgcacc gctttgacat tgttggtgaa 240tttcatgacc atgcacaccc
ttattatatt aactcaaata aaatacgcta ctttgtcagc 300tttagccatt cagataatca
agtcgctctc atcatcagct taacaccttg tgccattgac 360atagaagtta acgatattaa
atacagtgtg gttgaacgat actttcatcc caatgaaatt 420tatctactta ctcaatttag
ctctactgat aggcaacagc ttatta 46630631DNAStreptococcus
pneumoniae 30gatctttgat tttcattgag tattactctc tcttgtcact tctttctatt
ttaccataaa 60gtccagcctt tgaagaactt ttactagaag acaaggggct tctgtctcta
tttgccatct 120taggcatcaa aaaagagggg tcatccctct ttacgaattc aatgctacta
gggtatccaa 180atactggttg ttgatgactg ccaaaatata ggtatctgct ttcaagaggt
catctggtcc 240aaattcaaca tccaatgggg aattttcctg ctctcggaaa cccaaaatat
tcagattgta 300tttgccacgg aggtctaatt tacttcagac tttgacctgc ccaagactga
ggaattttca 360tctccacgat agacacattt ttatccaact gaaagacatc aacactatta
tgaaaagaat 420ggtctgtgct agagactgcc ccatttcata ctctggcgag ataaccgagt
cagctccaat 480cttttctagc actttcttag cggtctgact tttgacctta gcaataacag
tcggtacccc 540caaactctta cagtgcataa ccgcaagcac actcgactcc agattttcac
ctgtcgcgac 600tacaacggta tcgcaggtat caatccctgc t
631313754DNAStreptococcus pneumoniae 31ccaatatttt ggtcagcata
gtgttctttt tcagtggtaa cagcttgcaa tacttgagca 60gaaatggcag atttatcaag
gaaaaagtta acgtaaggtc ctgttgcgac aactttttca 120aaggcttggc tgttcatttt
ttcagccagt tcagccgcaa tcatttgtgg tgctttacgt 180tcgacttttg caagagaaaa
agcagggaaa gcaatgtctc ccatttctga gtttttaggg 240gtttccagta actttaaaat
agcctcttgg tccaggctat caatgatgct agataattcg 300ctagcaatca attcttttgt
attcattaag agctcctttt tggacttttc tactatttta 360tcacaatttt aaagaaagaa
gaaaaaattt ttgaaatctc ctgttttttt ggtataatat 420ggttataaat atagttataa
atatagttat aaatatgcac gcaagaggat tttatgagaa 480aaagagatcg tcatcagtta
ataaaaaaaa tgattactga ggagaaatta agtacacaaa 540aagaaattca agatcggttg
gaggcgcaca atgtttgtgt gacgcagaca accttgtctc 600gtgatttgcg cgaaatcggc
ttgaccaagg tcaagaaaaa tgatatggtg tattatgtac 660tagtaaatga gacagaaaag
attgatttgg tggaattttt gtctcatcat ttagaaggtg 720ttgcaagagc agagtttacc
ttggtgcttc ataccaaatt gggagaagcc tctgttttgg 780caaatattgt agatgtaaac
aaggatgaat ggattttagg aacagttgct ggtgccaata 840ccttattggt tatttgtcga
gatcagcacg ttgccaaact catggaagat cgtttgctag 900atttgatgaa agataagtaa
ggtcttggga gttgctctca agacttattt ttgaaaagga 960gagacagaaa atggcgatag
aaaagctatc acccggcatg caacagtatg tggatattaa 1020aaagcaatat ccagatgctt
ttttgctctt tcggatgggt gatttttatg aattatttta 1080tgaggatgcg gtcaatgctg
cgcagattct ggaaatttcc ttaacgagtc gcaacaagaa 1140tgccgacaat ccgatcccta
tggcgggtgt tccctatcat tctgcccaac agtatatcga 1200tgtcttgatt gagcagggtt
ataaggtggc tatcgcagag cagatggaag atcctaaaca 1260agcagttggg gttgttaaac
gagaggttgt tcaggtcatt acgccaggga cagtggtcga 1320tagcagtaag ccggacagtc
agaataattt tttggtttcc atagaccgcg aaggcaatca 1380atttggccta gcttatatgg
atttggtgac gggtgacttt tatgtgacag gtcttttgga 1440tttcacgctg gtttgtgggg
aaatccgtaa cctcaaggct cgagaagtgg tgttgggtta 1500tgacttgtct gaggaagaag
aacaaatcct cagccgccag atgaatctgg tactctctta 1560tgaaaaagaa agctttgaag
accttcattt attggatttg cgattggcaa cggtggagca 1620aacggcatct agtaagctgc
tccagtatgt tcatcggact cagatgaggg aattgaacca 1680cctcaaacct gttatccgct
acgaaattaa ggatttcttg cagatggatt atgcgaccaa 1740ggctagtctg gatttggttg
agaatgctcg ctcaggtaag aaacaaggca gtcttttctg 1800gcttttggat gaaaccaaaa
cggctatggg gatgcgtctc ttgcgttctt ggattcatcg 1860ccccttgatt gataaggaac
gaatcgtcca acgtcaagaa gtagtgcagg tctttctcga 1920ccatttcttt gagcgtagtg
acttgacaga cagtctcaag ggtgtttatg acattgagcg 1980cttggctagt cgtgtttctt
ttggcaaaac caatccaaag gatctcttgc agttggcgac 2040taccttgtct agtgtgccac
ggattcgtgc gattttagaa gggatggagc aacctactct 2100agcctatctc atcgcacaac
tggatgcaat ccctgagttg gagagtttga ttagcgcagc 2160gattgctcct gaagctcctc
atgtgattac agatggggga attatccgga ctggatttga 2220tgagacttta gacaagtatc
gttgcgttct cagagaaggg actagctgga ttgctgagat 2280tgaggctaag gagcgagaaa
actctggtat cagcacgctc aagattgact acaataaaaa 2340ggatggctac tattttcatg
tgaccaattc gcaactggga aatgtgccag cccacttttt 2400ccgcaaggcg acgctgaaaa
actcagaacg ctttggaacc gaagaattag cccgtatcga 2460gggagatatg cttgaggcgc
gtgagaagtc agccaacctc gaatacgaaa tatttatgcg 2520cattcgtgaa gaggtcggca
agtacatcca gcgtttacaa gctctagccc aaggaattgc 2580gacggttgat gtcttacaga
gtctggcggt tgtggctgaa acccagcatt tgattcgacc 2640tgagtttggt gacgattcac
aaattgatat ccggaaaggg cgccatgctg tcgttgaaaa 2700ggttatgggg gctcagacct
atattccaaa tacgattcag atggcagaag ataccagtat 2760tcaattggtt acagggccaa
acatgagtgg gaagtctacc tatatgcgtc agttagccat 2820gacggcggtt atggcccagc
tgggttccta tgttcctgct gaaagcgccc atttaccgat 2880ttttgatgcg atttttaccc
gtatcggagc agcagatgac ttggtttcgg gtcagtcaac 2940ctttatggtg gagatgatgg
aggccaataa tgccatttcg catgcgacca agaactctct 3000cattctcttt gatgaattgg
gacgtggaac tgcaacttat gacgggatgg ctcttgctca 3060gtccatcatc gaatatatcc
atgagcacat cggagctaag accctctttg cgacccacta 3120ccatgagttg actagtctgg
agtctagttt acaacacttg gtcaatgtcc acgtggcaac 3180tttggagcag gatgggcagg
tcaccttcct tcacaagatt gaaccgggac cagctgataa 3240atcctacggt atccatgttg
ccaagattgc tggcttgcca gcagaccttt tagcaagggc 3300ggataagatt ttgactcagc
tagagaatca aggaacagag agtcctcctc ccatgagaca 3360aactagtgct gtcactgaac
agatttcact ctttgatagg gcagaagagc atcctatcct 3420agcagaatta gctaaactgg
atgtgtataa tatgacacct atgcaggtta tgaatgtctt 3480agtagagtta aaacagaaac
tataaaacca agactcacta gttaatctag ctgtatcaag 3540gagacttctt tgacaattct
ccactttttt gctagaataa catcacacaa acagaatgaa 3600aagggctgac gcattgtcgc
tcccttttgt ctatttttta aggagaaagt atgctgattc 3660agaaaataaa aacctacaag
tggcaggccc tgcttcgctc ctgatgacag gcttgatggt 3720tgctagttca cttctgcaac
cgcgttatct gcag 3754321337DNAStreptococcus
pyogenes 32aacaaaataa aagaacttac ctattttcca tccaaaatgt ttagcaatca
tcatctgcaa 60ggcaacgtat tgcatggcat tgatgtgatg agcaactaat atgtcattag
aacgttgcgt 120caaactagca tctaaataaa gatcgaaatg cagttatcaa aaatgcaagc
tcctatcggc 180ccttgtttta attattactc acattgcctt aatgtattta cttgcttatt
attaactttt 240ttgctaagtt agtagcgtca gttattcatt gaaaggacat tattatgaaa
attcttgtaa 300caggctttga tccctttggc ggcgaagcta ttaatcctgc ccttgaagct
atcaagaaat 360tgccagcaac cattcatgga gcagaaatca aatgtattga agttccaacg
gtttttcaaa 420aatctgccga tgtgctccag cagcatatcg aaagctttca acctgatgca
gtcctttgta 480ttgggcaagc tggtggccgg actggactaa cgccagaacg cgttgccatt
aatcaagacg 540atgctcgcat tcctgataac gaagggaatc agcctattga tacacctatt
cgtgcagatg 600gtaaagcagc ttatttttca accttgccaa tcaaagcgat ggttgctgcc
attcatcagg 660ctgggcttcc tgcttctgtt tctaatacag ctggtacctt tgtttgcaat
catttgatgt 720atcaagccct ttacttagtg gataaatatt gtccaaatgc caaagctggg
tttatgcata 780ttccctttat gatggaacag gttgttgata aacctaatac agctgccatg
aacctcgatg 840atattacaag aggaattgag gctgctattt ttgccattgt cgatttcaaa
gatcgttccg 900atttaaaacg tgtagggggc gctactcact gactgtgacg ctactaaacc
tattttaaaa 960aaacagagat atgaactaac tctgtttttt ttgtgctaaa aatgaaagac
ctagggaaac 1020ttttcatcgg tctttctcaa ttgtcatctt aatctaatac tacttctaac
atcagcgggt 1080atagtttgcc agtaattaag aaacgttgtt gatctaaatg agcaatccca
ttcaaaacat 1140taaggtcagg gtaatgggac ttatcaagat ttaaggcttt taacaaagga
ctaatatcat 1200aggtggctac cacctttcca gaatcaggtt ggagtttgac aatagtattg
gtttgccaaa 1260tattggcata gagataacca tctacatact ctaattcgtt aagcattgag
atagggacac 1320tttctatagc aactagt
1337331837DNAStreptococcus pyogenes 33tcatgtttga cagcttatca
tcgataagct tacttttcga atcaggtcta tccttgaaac 60aggtgcaaca tagattaggg
catggagatt taccagacaa ctatgaacgt atatactcac 120atcacgcaat cggcaattga
tgacattgga actaaattca atcaatttgt tactaacaag 180caactagatt gacaactaat
tctcaacaaa cgttaattta acaacattca agtaactccc 240accagctcca tcaatgctta
ccgtaagtaa tcataactta ctaaaacctt gttacatcaa 300ggttttttct ttttgtcttg
ttcatgagtt accataactt tctatattat tgacaactaa 360attgacaact cttcaattat
ttttctgtct actcaaagtt ttcttcattt gatatagtct 420aattccacca tcacttcttc
cactctctct accgtcacaa cttcatcatc tctcactttt 480tcgtgtggta acacataatc
aaatatcttt ccgtttttac gcactatcgc tactgtgtca 540cctaaaatat accccttatc
aatcgcttct ttaaactcat ctatatataa catatttcat 600cctcctacct atctattcgt
aaaaagataa aaataactat tgtttttttt gttattttat 660aataaaatta ttaatataag
ttaatgtttt ttaaaaatat acaattttat tctatttata 720gttagctatt ttttcattgt
tagtaatatt ggtgaattgt aataaccttt ttaaatctag 780aggagaaccc agatataaaa
tggaggaata ttaatggaaa acaataaaaa agtattgaag 840aaaatggtat tttttgtttt
agtgacattt cttggactaa caatctcgca agaggtattt 900gctcaacaag accccgatcc
aagccaactt cacagatcta gtttagttaa aaaccttcaa 960aatatatatt ttctttatga
gggtgaccct gttactcacg agaatgtgaa atctgttgat 1020caacttttat ctcacgattt
aatatataat gtttcagggc caaattatga taaattaaaa 1080actgaactta agaaccaaga
gatggcaact ttatttaagg ataaaaacgt tgatatttat 1140ggtgtagaat attaccatct
ctgttattta tgtgaaaatg cagaaaggag tgcatgtatc 1200tacggagggg taacaaatca
tgaagggaat catttagaaa ttcctaaaaa gatagtcgtt 1260aaagtatcaa tcgatggtat
ccaaagccta tcatttgata ttgaaacaaa taaaaaaatg 1320gtaactgctc aagaattaga
ctataaagtt agaaaatatc ttacagataa taagcaacta 1380tatactaatg gaccttctaa
atatgaaact ggatatataa agttcatacc taagaataaa 1440gaaagttttt ggtttgattt
tttccctgaa ccagaattta ctcaatctaa atatcttatg 1500atatataaag ataatgaaac
gcttgactca aacacaagcc aaattgaagt ctacctaaca 1560accaagtaac tttttgcttt
tggcaacctt acctactgct ggatttagaa attttattgc 1620aattctttta ttaatgtaaa
aaccgctcat ttgatgagcg gttttgtctt atctaaagga 1680gctttacctc ctaatgctgc
aaaattttaa atgttggatt tttgtatttg tctattgtat 1740ttgatgggta atcccatttt
tcgacagaca tcgtcgtgcc acctctaaca ccaaaatcat 1800agacaggagc ttgtagctta
gcaactattt tatcgtc 183734841DNAStreptococcus
pneumoniae 34gatcaatatg tccaagaaac cacatgttcc taagacaaga gctaacagac
tggccgtcaa 60taatagtatt gttctttttt tcatcattac tccttaacta gtgtttaact
gattaattag 120ccagtaaata gtttatcttt atttacacta tctgttaaga tatagtaaaa
tgaaataaga 180acaggacagt caaatcgatt tctaacaatg ttttagaagt agaggtatac
tattctaatt 240tcaatctact atattttgca cattttcata aaaaaaatga gaactagaac
tcacattctg 300ctctcatttt tcgttttccc gttctcctat cctgttttta ggagttagaa
aatgctgcta 360cctttactta ctctccttta ataaagccaa tagtttttca gcttctgcca
taatagtatt 420gttgtcctgg gtgccaaata gtaaattatt ttttaatcct gtgagagtct
ctttggcatt 480ggacttgata attggattct ggatttttcc aagtaaatct tcagcctctc
tcagttttct 540taacctttca gtctcgacct gaggttcttc tgattcctct ggtgattctt
ctggtgattc 600ttcttctggt tcctctgttg gttttggaga ctctggtttc tcgctttgcg
gtttctcttc 660tcgaggggtt tcttcctcag gtttttctgt ctgaggtttc tcctcgtttg
gtttttccgt 720ttgattggta tcagcttgac catttttgtt tctttgaaca tggtcgctag
cgttaccaaa 780accattatct gaatgcgacg ttcgtttgga tgttcgacat agtacttgac
agtcgccaaa 840a
841354500DNAStreptococcus pneumoniae 35gatcaggaca gtcaaatcga
tttctaacaa tgttttagaa gtagatgtgt actattctag 60tttcaatcta ttatatttat
agaatttttt gttgctagat ttgtcaaatt gcttaaaata 120atttttttca gaaagcaaaa
gccgatacct atcgagtagg gtagttcttg ctatcgtcag 180gcttgtctgt aggtgttaac
acttttcaaa aatctcttca aacaacgtca gctttgcctt 240gccgtatata tgttactgac
ttcgtcagtt ctatctgcca cctcaaaacg gtgttttgag 300ctgacttcgt cagttctatc
cacaacctca aaacagtgtt ttgagctgac ttcgtcagtt 360ctatccacaa cctcaaaaca
gtgttttgag ctgactttgt cagtcttatc tacaacctca 420aaacagtgtt ttgagcatca
tgcggctagc ttcttagttt gctctttgat tttcattgag 480tataaaaaca gatgagtttc
tgttttcttt ttatggacta taaatgttca gctgaaacta 540ctttcaagga cattattata
taaaagaatt ttttgaaact aaaatctact atattacact 600atattgaaag cgttttaaaa
atgaggtata ataaatttac taacacttat aaaaagtgat 660agaatctatc tttatgtata
tttaaagata gattgctgta aaaatagtag tagctatgcg 720aaataacaga tagagagaag
ggattgaagc ttagaaaagg ggaataatat gatatttaag 780gcattcaaga caaaaaagca
gagaaaaaga caagttgaac tacttttgac agtttttttc 840gacagttttc tgattgattt
atttcttcac ttatttggga ttgtcccctt taagctggat 900aagattctga ttgtgagctt
gattatattt cccattattt ctacaagtat ttatgcttat 960gaaaagctat ttgaaaaagt
gttcgataag gattgagcag gaagtatggt gtaaatagca 1020taagctgatg tccatcattt
gcttataaag agatatttta gtttaattgc agcggtgtcc 1080tggtagataa actagattgg
caggagtctg attggagaaa ggagagggga aatttggcac 1140caatttgaga tagtttgttt
agttcatttt tgtcatttaa atgaactgta gtaaaagaaa 1200gttaataaaa gacaaactaa
gtgcattttc tggaataaat gtcttatttc agaaatcggg 1260atatagatat agagaggaac
agtatgaatc ggagtgttca agaacgtaag tgtcgttata 1320gcattaggaa actatcggta
ggagcggttt ctatgattgt aggagcagtg gtatttggaa 1380cgtctcctgt tttagctcaa
gaaggggcaa gtgagcaacc tctggcaaat gaaactcaac 1440tttcggggga gagctcaacc
ctaactgata cagaaaagag ccagccttct tcagagactg 1500aactttctgg caataagcaa
gaacaagaaa ggaaagataa gcaagaagaa aaaattccaa 1560gagattacta tgcacgagat
ttggaaaatg tcgaaacagt gatagaaaaa gaagatgttg 1620aaaccaatgc ttcaaatggt
cagagagttg atttatcaag tgaactagat aaactaaaga 1680aacttgaaaa cgcaacagtt
cacatggagt ttaagccaga tgccaaggcc ccagcattct 1740ataatctctt ttctgtgtca
agtgctacta aaaaagatga gtacttcact atggcagttt 1800acaataatac tgctactcta
gaggggcgtg gttcggatgg gaaacagttt tacaataatt 1860acaacgatgc acccttaaaa
gttaaaccag gtcagtggaa ttctgtgact ttcacagttg 1920aaaaaccgac agcagaacta
cctaaaggcc gagtgcgcct ctacgtaaac ggggtattat 1980ctcgaacaag tctgagatct
ggcaatttca ttaaagatat gccagatgta acgcatgtgc 2040aaatcggagc aaccaagcgt
gccaacaata cggtttgggg gtcaaatcta cagattcgga 2100atctcactgt gtataatcgt
gctttaacac cagaagaggt acaaaaacgt agtcaacttt 2160ttaaacgctc agatttagaa
aaaaaactac ctgaaggagc ggctttaaca gagaaaacgg 2220acatattcga aagcgggcgt
aacggtaaac caaataaaga tggaatcaag agttatcgta 2280ttccagcact tctcaagaca
gataaaggaa ctttgatcgc aggtgcagat gaacgccgtc 2340tccattcgag tgactggggt
gatatcggta tggtcatcag acgtagtgaa gataatggta 2400aaacttgggg tgaccgagta
accattacca acttacgtga caatccaaaa gcttctgacc 2460catcgatcgg ttcaccagtg
aatatcgata tggtgttggt tcaagatcct gaaaccaaac 2520gaatcttttc tatctatgac
atgttcccag aagggaaggg aatctttgga atgtcttcac 2580aaaaagaaga agcctacaaa
aaaatcgatg gaaaaaccta tcaaatcctc tatcgtgaag 2640gagaaaaggg agcttatacc
attcgagaaa atggtactgt ctatacacca gatggtaagg 2700cgacagacta tcgcgttgtt
gtagatcctg ttaaaccagc ctatagcgac aagggggatc 2760tatacaaggg taaccaatta
ctaggcaata tctacttcac aacaaacaaa acttctccat 2820ttagaattgc caaggatagc
tatctatgga tgtcctacag tgatgacgac gggaagacat 2880ggtcagcgcc tcaagatatt
actccgatgg tcaaagccga ttggatgaaa ttcttgggtg 2940taggtcctgg aacaggaatt
gtacttcgga atgggcctca caagggacgg attttgatac 3000cggtttatac gactaataat
gtatctcact taaatggctc gcaatcttct cgtatcatct 3060attcagatga tcatggaaaa
acttggcatg ctggagaagc ggtcaacgat aaccgtcagg 3120tagacggtca aaagatccac
tcttctacga tgaacaatag acgtgcgcaa aatacagaat 3180caacggtggt acaactaaac
aatggagatg ttaaactctt tatgcgtggt ttgactggag 3240atcttcaggt tgctacaagt
aaagacggag gagtgacttg ggagaaggat atcaaacgtt 3300atccacaggt taaagatgtc
tatgttcaaa tgtctgctat ccatacgatg cacgaaggaa 3360aagaatacat catcctcagt
aatgcaggtg gaccgaaacg tgaaaatggg atggtccact 3420tggcacgtgt cgaagaaaat
ggtgagttga cttggctcaa acacaatcca attcaaaaag 3480gagagtttgc ctataattcg
ctccaagaat taggaaatgg ggagtatggc atcttgtatg 3540aacatactga aaaaggacaa
aatgcctata ccctatcatt tagaaaattt aattgggact 3600ttttgagcaa agatctgatt
tctcctaccg aagcgaaagt gaagcgaact agagagatgg 3660gcaaaggagt tattggcttg
gagttcgact cagaagtatt ggtcaacaag gctccaaccc 3720ttcaattggc aaatggtaaa
acagcacgct tcatgaccca gtatgataca aaaaccctcc 3780tatttacagt ggattcagag
gatatgggtc aaaaagttac aggtttggca gaaggtgcaa 3840ttgaaagtat gcataattta
ccagtctctg tggcgggcac taagctttcg aatggaatga 3900acggaagtga agctgctgtt
catgaagtgc cagaatacac aggcccatta gggacatccg 3960gcgaagagcc agctccaaca
gtcgagaagc cagaatacac aggcccacta gggacatccg 4020gcgaagagcc agccccgaca
gtcgagaagc cagaatacac aggcccacta gggacagctg 4080gtgaagaagc agctccaaca
gtcgagaagc cagaatttac agggggagtt aatggtacag 4140agccagctgt tcatgaaatc
gcagagtata agggatctga ttcgcttgta actcttacta 4200caaaagaaga ttatacttac
aaagctcctc ttgctcagca ggcacttcct gaaacaggaa 4260acaaggagag tgacctccta
gcttcactag gactaacagc tttcttcctt ggtctgttta 4320cgctagggaa aaagagagaa
caataagaga agaattctaa acatttgatt ttgtaaaaat 4380agaaggagat agcaggtttt
caagcctgct atcttttttt gatgacattc aggctgatac 4440gaaatcataa gaggtctgaa
actactttca gagtagtctg ttctataaaa tatagtagat 450036705DNAStaphylococcus
epidermidis 36gatccaagct tatcgatatc atcaaaaagt tggcgaacct tttcaaattt
tggttcaaat 60tcttgagatg tatagaattc aaaatattta ccatttgcat agtctgattg
ctcaaagtct 120tgatactttt ctccacgctc ttttgcaatt tccattgaac gttcgatgga
ataatagttc 180ataatcataa agaatatatt agcaaagtct tttgcttctt cagattcata
gccaatttta 240tttttagcta gataaccatg taagttcatt actcctagtc caacagaatg
tagttcacta 300ttcgcttttt ttacacctgg tgcattttga atatttgctt catcacttac
aactgtaaga 360gcatccatac ctgtgaacac agaatctctg aatttacctg attccataac
attcactata 420ttcaatgagc ctaagttaca tgaaatatct cttttaattt catcttcaat
tccatagtcg 480ttaattactg atgtctcttg taattggaaa atttcagtac ataaattact
cattttaatt 540tgcccaatat ttgaattcgc atgtactttg tttgcattat ctttaaacat
aagatatgga 600taaccagact gtaattgtgt ttgtgcaatc atatttaaca tttcacgtgc
gtcttttttc 660tttttatcga tttcgaaccc ggggtaccga attcctcgag tctag
70537442DNAStaphylococcus aureus 37gatcaatctt tgtcggtaca
cgatattctt cacgactaaa taaacgctca ttcgcgattt 60tataaatgaa tgttgataac
aatgttgtat tatctactga aatctcatta cgttgcatcg 120gaaacattgt gttctgtatg
taaaagccgt cttgataatc tttagtagta ccgaagctgg 180tcatacgaga gttatatttt
ccagccaaaa cgatattttt ataatcatta cgtgaaaaag 240gtttcccttc attatcacac
aaatatttta gcttttcagt ttctatatca actgtagctt 300ctttatccat acgttgaata
attgtacgat tctgacgcac catcttttgc acacctttaa 360tgttatttgt tttaaaagca
tgaataagtt tttcaacaca acgatgtgaa tcttctaaga 420agtcaccgta aaatgaagga
tc 4423820DNAEnterococcus
faecalis 38gcaatacagg gaaaaatgtc
203920DNAEnterococcus faecalis 39cttcatcaaa caattaactc
204020DNAEnterococcus faecalis
40gaacagaaga agccaaaaaa
204120DNAEnterococcus faecalis 41gcaatcccaa ataatacggt
204219DNAEscherichia coli 42gctttccagc
gtcatattg
194319DNAEscherichia coli 43gatctcgaca aaatggtga
194425DNAEscherichia coli 44cacccgcttg cgtggcaagc
tgccc 254525DNAEscherichia coli
45cgtttgtgga ttccagttcc atccg
254617DNAEscherichia coli 46tcacccgctt gcgtggc
174719DNAEscherichia coli 47ggaactggaa tccacaaac
194825DNAEscherichia coli
48tgaagcactg gccgaaatgc tgcgt
254925DNAEscherichia coli 49gatgtacagg attcgttgaa ggctt
255025DNAEscherichia coli 50tagcgaaggc gtagcagaaa
ctaac 255125DNAEscherichia coli
51gcaacccgaa ctcaacgccg gattt
255225DNAEscherichia coli 52atacacaagg gtcgcatctg cggcc
255326DNAEscherichia coli 53tgcgtatgca ttgcagacct
tgtggc 265425DNAEscherichia coli
54gctttcactg gatatcgcgc ttggg
255519DNAEscherichia coli 55gcaacccgaa ctcaacgcc
195619DNAEscherichia coli 56gcagatgcga cccttgtgt
195723DNAKlebsiella
pneumoniae 57gtggtgtcgt tcagcgcttt cac
235825DNAKlebsiella pneumoniae 58gcgatattca caccctacgc agcca
255926DNAKlebsiella pneumoniae
59gtcgaaaatg ccggaagagg tatacg
266026DNAKlebsiella pneumoniae 60actgagctgc agaccggtaa aactca
266119DNAKlebsiella pneumoniae 61gacagtcagt
tcgtcagcc
196219DNAKlebsiella pneumoniae 62cgtagggtgt gaatatcgc
196326DNAKlebsiella pneumoniae 63cgtgatggat
attcttaacg aagggc
266423DNAKlebsiella pneumoniae 64accaaactgt tgagccgcct gga
236523DNAKlebsiella pneumoniae 65gtgatcgccc
ctcatctgct act
236626DNAKlebsiella pneumoniae 66cgcccttcgt taagaatatc catcac
266719DNAKlebsiella pneumoniae 67tcgcccctca
tctgctact
196819DNAKlebsiella pneumoniae 68gatcgtgatg gatattctt
196925DNAKlebsiella pneumoniae 69caggaagatg
ctgcaccggt tgttg
257025DNAProteus mirabilis 70tggttcactg actttgcgat gtttc
257125DNAProteus mirabilis 71tcgaggatgg
catgcactag aaaat
257230DNAProteus mirabilis 72cgctgattag gtttcgctaa aatcttatta
307330DNAProteus mirabilis 73ttgatcctca
ttttattaat cacatgacca
307419DNAProteus mirabilis 74gaaacatcgc aaagtcagt
197520DNAProteus mirabilis 75ataaaatgag
gatcaagttc
207630DNAProteus mirabilis 76ccgcctttag cattaattgg tgtttatagt
307730DNAProteus mirabilis 77cctattgcag
ataccttaaa tgtcttgggc
307826DNAStreptococcus pneumoniae 78agtaaaatga aataagaaca ggacag
267925DNAStreptococcus pneumoniae
79aaaacaggat aggagaacgg gaaaa
258025DNAProteus mirabilis 80ttgagtgatg atttcactga ctccc
258125DNAProteus mirabilis 81gtcagacagt
gatgctgacg acaca
258227DNAProteus mirabilis 82tggttgtcat gctgtttgtg tgaaaat
278319DNAPseudomonas aeruginosa 83cgagcgggtg
gtgttcatc
198419DNAPseudomonas aeruginosa 84caagtcgtcg tcggaggga
198519DNAPseudomonas aeruginosa
85tcgctgttca tcaagaccc
198619DNAPseudomonas aeruginosa 86ccgagaacca gacttcatc
198725DNAPseudomonas aeruginosa
87aatgcggctg tacctcggcg ctggt
258825DNAPseudomonas aeruginosa 88ggcggagggc cagttgcacc tgcca
258925DNAPseudomonas aeruginosa
89agccctgctc ctcggcagcc tctgc
259025DNAPseudomonas aeruginosa 90tggcttttgc aaccgcgttc aggtt
259125DNAPseudomonas aeruginosa
91gcgcccgcga gggcatgctt cgatg
259225DNAPseudomonas aeruginosa 92acctgggcgc caactacaag ttcta
259325DNAPseudomonas aeruginosa
93ggctacgctg ccgggctgca ggccg
259425DNAPseudomonas aeruginosa 94ccgatctaca ccatcgagat gggcg
259525DNAPseudomonas aeruginosa
95gagcgcggct atgtgttcgt cggct
259629DNAStaphylococcus saprophyticus 96cgtttttacc cttacctttt cgtactacc
299730DNAStaphylococcus saprophyticus
97tcaggcagag gtagtacgaa aaggtaaggg
309826DNAStaphylococcus saprophyticus 98cgtttttacc cttacctttt cgtact
269928DNAStaphylococcus saprophyticus
99atcgatcatc acattccatt tgttttta
2810027DNAStaphylococcus saprophyticus 100caccaagttt gacacgtgaa gattcat
2710130DNAStaphylococcus
saprophyticus 101atgagtgaag cggagtcaga ttatgtgcag
3010225DNAStaphylococcus saprophyticus 102cgctcattac
gtacagtgac aatcg
2510330DNAStaphylococcus saprophyticus 103ctggttagct tgactcttaa
caatcttgtc 3010430DNAStaphylococcus
saprophyticus 104gacgcgattg tcactgtacg taatgagcga
3010528DNAHaemophilus influenzae 105gcgtcagaaa aagtaggcga
aatgaaag 2810625DNAHaemophilus
influenzae 106agcggctcta tcttgtaatg acaca
2510725DNAHaemophilus influenzae 107gaaacgtgaa ctcccctcta tataa
2510825DNAMoraxella catarrhalis
108gccccaaaac aatgaaacat atggt
2510925DNAMoraxella catarrhalis 109ctgcagattt tggaatcata tcgcc
2511025DNAMoraxella catarrhalis
110tggtttgacc agtatttaac gccat
2511125DNAMoraxella catarrhalis 111caacggcacc tgatgtacct tgtac
2511218DNAMoraxella catarrhalis
112ggcacctgat gtaccttg
1811317DNAMoraxella catarrhalis 113aacagctcac acgcatt
1711425DNAMoraxella catarrhalis
114ttacaacctg caccacaagt catca
2511525DNAMoraxella catarrhalis 115gtacaaacaa gccgtcagcg actta
2511623DNAMoraxella catarrhalis
116caatctgcgt gtgtgcgttc act
2311726DNAMoraxella catarrhalis 117gctactttgt cagctttagc cattca
2611824DNAMoraxella catarrhalis
118tgttttgagc tttttatttt ttga
2411922DNAMoraxella catarrhalis 119cgctgacggc ttgtttgtac ca
2212025DNAStreptococcus pneumoniae
120tctgtgctag agactgcccc atttc
2512125DNAStreptococcus pneumoniae 121cgatgtcttg attgagcagg gttat
2512225DNAArtificial
SequenceOligonucleotide 122atcccacctt aggcggctgg ctcca
2512331DNAArtificial SequenceOligonucleotide
123acgtcaagtc atcatggccc ttacgagtag g
3112425DNAArtificial SequenceOligonucleotide 124gtgtgacggg cggtgtgtac
aaggc 2512528DNAArtificial
SequenceOligonucleotide 125gagttgcaga ctccaatccg gactacga
2812620DNAArtificial SequenceOligonucleotide
126ggaggaaggt ggggatgacg
2012720DNAArtificial SequenceOligonucleotide 127atggtgtgac gggcggtgtg
2012832DNAArtificial
SequenceOligonucleotide 128ccctatacat caccttgcgg tttagcagag ag
3212928DNAArtificial SequenceOligonucleotide
129ggggggacca tcctccaagg ctaaatac
2813032DNAArtificial SequenceOligonucleotide 130cgtccacttt cgtgtttgca
gagtgctgtg tt 3213120DNAEscherichia
coli 131caggagtacg gtgattttta
2013220DNAEscherichia coli 132atttctggtt tggtcataca
2013320DNAProteus mirabilis 133cgggagtcag
tgaaatcatc
2013420DNAProteus mirabilis 134ctaaaatcgc cacacctctt
2013518DNAKlebsiella pneumoniae 135gcagcgtggt
gtcgttca
1813618DNAKlebsiella pneumoniae 136agctggcaac ggctggtc
1813720DNAKlebsiella pneumoniae
137attcacaccc tacgcagcca
2013820DNAKlebsiella pneumoniae 138atccggcagc atctctttgt
2013925DNAStaphylococcus saprophyticus
139ctggttagct tgactcttaa caatc
2514025DNAStaphylococcus saprophyticus 140tcttaacgat agaatggagc aactg
2514120DNAStreptococcus pyogenes
141tgaaaattct tgtaacaggc
2014220DNAStreptococcus pyogenes 142ggccaccagc ttgcccaata
2014320DNAStreptococcus pyogenes
143atattttctt tatgagggtg
2014420DNAStreptococcus pyogenes 144atccttaaat aaagttgcca
2014525DNAStaphylococcus epidermidis
145atcaaaaagt tggcgaacct tttca
2514625DNAStaphylococcus epidermidis 146caaaagagcg tggagaaaag tatca
2514730DNAStaphylococcus epidermidis
147tctcttttaa tttcatcttc aattccatag
3014830DNAStaphylococcus epidermidis 148aaacacaatt acagtctggt tatccatatc
3014930DNAStaphylococcus aureus
149cttcatttta cggtgacttc ttagaagatt
3015030DNAStaphylococcus aureus 150tcaactgtag cttctttatc catacgttga
3015130DNAStaphylococcus aureus
151atattttagc ttttcagttt ctatatcaac
3015230DNAStaphylococcus aureus 152aatctttgtc ggtacacgat attcttcacg
3015330DNAStaphylococcus aureus
153cgtaatgaga tttcagtaga taatacaaca
3015425DNAHaemophilus influenzae 154tttaacgatc cttttactcc ttttg
2515525DNAHaemophilus influenzae
155actgctgttg taaagaggtt aaaat
2515620DNAStreptococcus pneumoniae 156atttggtgac gggtgacttt
2015720DNAStreptococcus pneumoniae
157gctgaggatt tgttcttctt
2015820DNAStreptococcus pneumoniae 158gagcggtttc tatgattgta
2015920DNAStreptococcus pneumoniae
159atctttcctt tcttgttctt
2016018DNAMoraxella catarrhalis 160gctcaaatca gggtcagc
18161861DNAEscherichia coli 161atgagtattc
aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct 60gtttttgctc
acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 120cgagtgggtt
acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc 180gaagaacgtt
ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 240cgtgttgacg
ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg 300gttgagtact
caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta 360tgcagtgctg
ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 420ggaggaccga
aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt 480gatcgttggg
aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 540cctgcagcaa
tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct 600tcccggcaac
aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc 660tcggcccttc
cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct 720cgcggtatca
ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac 780acgacgggga
gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 840tcactgatta
agcattggta a
861162918DNAPasteurella haemolytica 162atgttaaata agttaaaaat cggcacatta
ttattgctga cattaacggc ttgttcgccc 60aattctgttc attcggtaac gtctaatccg
cagcctgcta gtgcgcctgt gcaacaatca 120gccacacaag ccacctttca acagactttg
gcgaatttgg aacagcagta tcaagcccga 180attggcgttt atgtatggga tacagaaacg
ggacattctt tgtcttatcg tgcagatgaa 240cgctttgctt atgcgtccac tttcaaggcg
ttgttggctg gggcggtgtt gcaatcgctg 300cctgaaaaag atttaaatcg taccatttca
tatagccaaa aagatttggt tagttattct 360cccgaaaccc aaaaatacgt tggcaaaggc
atgacgattg cccaattatg tgaagcagcc 420gtgcggttta gcgacaacag cgcgaccaat
ttgctgctca aagaattggg tggcgtggaa 480caatatcaac gtattttgcg acaattaggc
gataacgtaa cccataccaa tcggctagaa 540cccgatttaa atcaagccaa acccaacgat
attcgtgata cgagtacacc caaacaaatg 600gcgatgaatt taaatgcgta tttattgggc
aacacattaa ccgaatcgca aaaaacgatt 660ttgtggaatt ggttggacaa taacgcaaca
ggcaatccat tgattcgcgc tgctacgcca 720acatcgtgga aagtgtacga taaaagcggg
gcgggtaaat atggtgtacg caatgatatt 780gcggtggttc gcataccaaa tcgcaaaccg
attgtgatgg caatcatgag tacgcaattt 840accgaagaag ccaaattcaa caataaatta
gtagaagatg cagcaaagca agtatttcat 900actttacagc tcaactaa
918163864DNAKlebsiella pneumoniae
163atgcgttata ttcgcctgtg tattatctcc ctgttagcca ccctgccgct ggcggtacac
60gccagcccgc agccgcttga gcaaattaaa ctaagcgaaa gccagctgtc gggccgcgta
120ggcatgatag aaatggatct ggccagcggc cgcacgctga ccgcctggcg cgccgatgaa
180cgctttccca tgatgagcac ctttaaagta gtgctctgcg gcgcagtgct ggcgcgggtg
240gatgccggtg acgaacagct ggagcgaaag atccactatc gccagcagga tctggtggac
300tactcgccgg tcagcgaaaa acaccttgcc gacgcaatga cggtcggcga actctgcgcc
360gccgccatta ccatgagcga taacagcgcc gccaatctgc tactggccac cgtcggcggc
420cccgcaggat tgactgcctt tttgcgccag atcggcgaca acgtcacccg ccttgaccgc
480tgggaaacgg aactgaatga ggcgcttccc ggcgacgccc gcgacaccac taccccggcc
540agcatggccg cgaccctgcg caacgttggc ctgaccagcc agcgtctgag cgcccgttcg
600caacggcagc tgctgcagtg gatggtggac gatcgggtcg ccggaccgtt gatccgctcc
660gtgctgccgg cgggctggtt tatcgccgat aagaccggag ctggcgagcg gggtgcgcgc
720gggattgtcg ccctgcttgg cccgaataac aaagcagagc gcattgtggt gatttatctg
780cgggataccc cggcgagcat ggccgagcga aatcagcaaa tcgccgggat cggcaaggcg
840ctgtacgagc actggcaacg ctaa
864164534DNAKlebsiella pneumoniae 164atggacacaa cgcaggtcac attgatacac
aaaattctag ctgcggcaga tgagcgaaat 60ctgccgctct ggatcggtgg gggctgggcg
atcgatgcac ggctagggcg tgtaacacgc 120aagcacgatg atattgatct gacgtttccc
ggcgagaggc gcggcgagct cgaggcaata 180gttgaaatgc tcggcgggcg cgtcatggag
gagttggact atggattctt agcggagatc 240ggggatgagt tacttgactg cgaacctgct
tggtgggcag acgaagcgta tgaaatcgcg 300gaggctccgc agggctcgtg cccagaggcg
gctgagggcg tcatcgccgg gcggccagtc 360cgttgtaaca gctgggaggc gatcatctgg
gattactttt actatgccga tgaagtacca 420ccagtggact ggcctacaaa gcacatagag
tcctacaggc tcgcatgcac ctcactcggg 480gcggaaaagg ttgaggtctt gcgtgccgct
ttcaggtcgc gatatgcggc ctaa 534165465DNAArtificial
SequenceEnterobacteriaceae 165atgggcatca ttcgcacatg taggctcggc cctgaccaag
tcaaatccat gcgggctgct 60cttgatcttt tcggtcgtga gttcggagac gtagccacct
actcccaaca tcagccggac 120tccgattacc tcgggaactt gctccgtagt aagacattca
tcgcgcttgc tgccttcgac 180caagaagcgg ttgttggcgc tctcgcggct tacgttctgc
ccaggtttga gcagccgcgt 240agtgagatct atatctatga tctcgcagtc tccggcgagc
accggaggca gggcattgcc 300accgcgctca tcaatctcct caagcatgag gccaacgcgc
ttggtgctta tgtgatctac 360gtgcaagcag attacggtga cgatcccgca gtggctctct
atacaaagtt gggcatacgg 420gaagaagtga tgcactttga tatcgaccca agtaccgcca
cctaa 465166861DNAEscherichia coli 166atgcatacgc
ggaaggcaat aacggaggcg cttcaaaaac tcggagtcca aaccggtgac 60ctattgatgg
tgcatgcctc acttaaagcg attggtccgg tcgaaggagg agcggagacg 120gtcgttgccg
cgttacgctc cgcggttggg ccgactggca ctgtgatggg atacgcatcg 180tgggaccgat
caccctacga ggagactcgt aatggcgctc ggttggatga caaaacccgc 240cgtacctggc
cgccgttcga tcccgcaacg gccgggactt accgtgggtt cggcctgctg 300aatcagtttc
tggttcaagc ccccggcgcg cggcgcagcg cgcaccccga tgcatcgatg 360gtcgcggttg
gtccactggc tgaaacgctg acggagcctc acaagctcgg tcacgccttg 420ggggaagggt
cgcccgtcga gcggttcgtt cgccttggcg ggaaggccct gctgttgggt 480gcgccgctaa
actccgttac cgcattgcac tacgccgagg cggttgccga tatccccaac 540aaacggcggg
tgacgtatga gatgccgatg cttggaagca acggcgaagt cgcctggaaa 600acggcatcgg
attacgattc aaacggcatt ctcgattgct ttgctatcga aggaaagccg 660gatgcggtcg
aaactatagc aaatgcttac gtgaagctcg gtcgccatcg agaaggtgtc 720gtgggctttg
ctcagtgcta cctgttcgac gcgcaggaca tcgtgacgtt cggcgtcacc 780tatcttgaga
agcatttcgg aaccactccg atcgtgccag cacacgaagt cgccgagtgc 840tcttgcgagc
cttcaggtta g
861167816DNAPseudomonas aeruginosa 167atgaccgatt tgaatatccc gcatacacac
gcgcaccttg tagacgcatt tcaggcgctc 60ggcatccgcg cggggcaggc gctcatgctg
cacgcatccg ttaaagcagt gggcgcggtg 120atgggcggcc ccaatgtgat cttgcaggcg
ctcatggatg cgctcacgcc cgacggcacg 180ctgatgatgt atgcgggatg gcaagacatc
cccgacttta tcgactcgct gccggacgcg 240ctcaaggccg tgtatcttga gcagcaccca
ccctttgacc ccgccaccgc ccgcgccgtg 300cgcgaaaaca gcgtgctagc ggaatttttg
cgcacatggc cgtgcgtgca tcgcagcgca 360aaccccgaag cctctatggt ggcggtaggc
aggcaggccg ctttgctgac cgctaatcac 420gcgctggatt atggctacgg agtcgagtcg
ccgctggcta aactggtggc aatagaagga 480tacgtgctga tgcttggcgc gccgctggat
accatcacac tgctgcacca cgcggaatat 540ctggccaaga tgcgccacaa gaacgtggtc
cgctacccgt gcccgattct gcgggacggg 600cgcaaagtgt gggtgaccgt tgaggactat
gacaccggtg atccgcacga cgattatagt 660tttgagcaaa tcgcgcgcga ttatgtggcg
cagggcggcg gcacacgcgg caaagtcggt 720gatgcggatg cttacctgtt cgccgcgcag
gacctcacac ggtttgcggt gcagtggctt 780gaatcacggt tcggtgactc agcgtcatac
ggatag 816168498DNAPseudomonas aeruginosa
168atgctctatg agtggctaaa tcgatctcat atcgtcgagt ggtggggcgg agaagaagca
60cgcccgacac ttgctgacgt acaggaacag tacttgccaa gcgttttagc gcaagagtcc
120gtcactccat acattgcaat gctgaatgga gagccgattg ggtatgccca gtcgtacgtt
180gctcttggaa gcggggacgg atggtgggaa gaagaaaccg atccaggagt acgcggaata
240gaccagttac tggcgaatgc atcacaactg ggcaaaggct tgggaaccaa gctggttcga
300gctctggttg agttgctgtt caatgatccc gaggtcacca agatccaaac ggacccgtcg
360ccgagcaact tgcgagcgat ccgatgctac gagaaagcgg ggtttgagag gcaaggtacc
420gtaaccaccc cagatggtcc agccgtgtac atggttcaaa cacgccaggc attcgagcga
480acacgcagtg atgcctaa
4981692007DNAStaphylococcus aureus 169atgaaaaaga taaaaattgt tccacttatt
ttaatagttg tagttgtcgg gtttggtata 60tatttttatg cttcaaaaga taaagaaatt
aataatacta ttgatgcaat tgaagataaa 120aatttcaaac aagtttataa agatagcagt
tatatttcta aaagcgataa tggtgaagta 180gaaatgactg aacgtccgat aaaaatatat
aatagtttag gcgttaaaga tataaacatt 240caggatcgta aaataaaaaa agtatctaaa
aataaaaaac gagtagatgc tcaatataaa 300attaaaacaa actacggtaa cattgatcgc
aacgttcaat ttaattttgt taaagaagat 360ggtatgtgga agttagattg ggatcatagc
gtcattattc caggaatgca gaaagaccaa 420agcatacata ttgaaaattt aaaatcagaa
cgtggtaaaa ttttagaccg aaacaatgtg 480gaattggcca atacaggaac acatatgaga
ttaggcatcg ttccaaagaa tgtatctaaa 540aaagattata aagcaatcgc taaagaacta
agtatttctg aagactatat caacaacaaa 600tggatcaaaa ttgggtacaa gatgatacct
tcgttccact ttaaaaccgt taaaaaaatg 660gatgaatatt taagtgattt cgcaaaaaaa
tttcatctta caactaatga aacagaaagt 720cgtaactatc ctctagaaaa agcgacttca
catctattag gttatgttgg tcccattaac 780tctgaagaat taaaacaaaa agaatataaa
ggctataaag atgatgcagt tattggtaaa 840aagggactcg aaaaacttta cgataaaaag
ctccaacatg aagatggcta tcgtgtcaca 900atcgttgacg ataatagcaa tacaatcgca
catacattaa tagagaaaaa gaaaaaagat 960ggcaaagata ttcaactaac tattgatgct
aaagttcaaa agagtattta taacaacatg 1020aaaaatgatt atggctcagg tactgctatc
caccctcaaa caggtgaatt attagcactt 1080gtaagcacac cttcatatga cgtctatcca
tttatgtatg gcatgagtaa cgaagaatat 1140aataaattaa ccgaagataa aaaagaacct
ctgctcaaca agttccagat tacaacttca 1200ccaggttcaa ctcaaaaaat attaacagca
atgattgggt taaataacaa aacattagac 1260gataaaacaa gttataaaat cgatggtaaa
ggttggcaaa aagataaatc ttggggtggt 1320tacaacgtta caagatatga agtggtaaat
ggtaatatcg acttaaaaca agcaatagaa 1380tcatcagata acattttctt tgctagagta
gcactcgaat taggcagtaa gaaatttgaa 1440aaaggcatga aaaaactagg tgttggtgaa
gatataccaa gtgattatcc attttataat 1500gctcaaattt caaacaaaaa tttagataat
gaaatattat tagctgattc aggttacgga 1560caaggtgaaa tactgattaa cccagtacag
atcctttcaa tctatagcgc attagaaaat 1620aatggcaata ttaacgcacc tcacttatta
aaagacacga aaaacaaagt ttggaagaaa 1680aatattattt ccaaagaaaa tatcaatcta
ttaaatgatg gtatgcaaca agtcgtaaat 1740aaaacacata aagaagatat ttatagatct
tatgcaaact taattggcaa atccggtact 1800gcagaactca aaatgaaaca aggagaaagt
ggcagacaaa ttgggtggtt tatatcatat 1860gataaagata atccaaacat gatgatggct
attaatgtta aagatgtaca agataaagga 1920atggctagct acaatgccaa aatctcaggt
aaagtgtatg atgagctata tgagaacggt 1980aataaaaaat acgatataga tgaataa
20071702607DNAEnterococcus faecium
170atgaataaca tcggcattac tgtttatgga tgtgagcagg atgaggcaga tgcattccat
60gctctttcgc ctcgctttgg cgttatggca acgataatta acgccaacgt gtcggaatcc
120aacgccaaat ccgcgccttt caatcaatgt atcagtgtgg gacataaatc agagatttcc
180gcctctattc ttcttgcgct gaagagagcc ggtgtgaaat atatttctac ccgaagcatc
240ggctgcaatc atatagatac aactgctgct aagagaatgg gcatcactgt cgacaatgtg
300gcgtactcgc cggatagcgt tgccgattat actatgatgc taattcttat ggcagtacgc
360aacgtaaaat cgattgtgcg ctctgtggaa aaacatgatt tcaggttgga cagcgaccgt
420ggcaaggtac tcagcgacat gacagttggt gtggtgggaa cgggccagat aggcaaagcg
480gttattgagc ggctgcgagg atttggatgt aaagtgttgg cttatagtcg cagccgaagt
540atagaggtaa actatgtacc gtttgatgag ttgctgcaaa atagcgatat cgttacgctt
600catgtgccgc tcaatacgga tacgcactat attatcagcc acgaacaaat acagagaatg
660aagcaaggag catttcttat caatactggg cgcggtccac ttgtagatac ctatgagttg
720gttaaagcat tagaaaacgg gaaactgggc ggtgccgcat tggatgtatt ggaaggagag
780gaagagtttt tctactctga ttgcacccaa aaaccaattg ataatcaatt tttacttaaa
840cttcaaagaa tgcctaacgt gataatcaca ccgcatacgg cctattatac cgagcaagcg
900ttgcgtgata ccgttgaaaa aaccattaaa aactgtttgg attttgaaag gagacaggag
960catgaataga ataaaagttg caatactgtt tgggggttgc tcagaggagc atgacgtatc
1020ggtaaaatct gcaatagaga tagccgctaa cattaataaa gaaaaatacg agccgttata
1080cattggaatt acgaaatctg gtgtatggaa aatgtgcgaa aaaccttgcg cggaatggga
1140aaacgacaat tgctattcag ctgtactctc gccggataaa aaaatgcacg gattacttgt
1200taaaaagaac catgaatatg aaatcaacca tgttgatgta gcattttcag ctttgcatgg
1260caagtcaggt gaagatggat ccatacaagg tctgtttgaa ttgtccggta tcccttttgt
1320aggctgcgat attcaaagct cagcaatttg tatggacaaa tcgttgacat acatcgttgc
1380gaaaaatgct gggatagcta ctcccgcctt ttgggttatt aataaagatg ataggccggt
1440ggcagctacg tttacctatc ctgtttttgt taagccggcg cgttcaggct catccttcgg
1500tgtgaaaaaa gtcaatagcg cggacgaatt ggactacgca attgaatcgg caagacaata
1560tgacagcaaa atcttaattg agcaggctgt ttcgggctgt gaggtcggtt gtgcggtatt
1620gggaaacagt gccgcgttag ttgttggcga ggtggaccaa atcaggctgc agtacggaat
1680ctttcgtatt catcaggaag tcgagccgga aaaaggctct gaaaacgcag ttataaccgt
1740tcccgcagac ctttcagcag aggagcgagg acggatacag gaaacggcaa aaaaaatata
1800taaagcgctc ggctgtagag gtctagcccg tgtggatatg tttttacaag ataacggccg
1860cattgtactg aacgaagtca atactctgcc cggtttcacg tcatacagtc gttatccccg
1920tatgatggcc gctgcaggta ttgcacttcc cgaactgatt gaccgcttga tcgtattagc
1980gttaaagggg tgataagcat ggaaatagga tttacttttt tagatgaaat agtacacggt
2040gttcgttggg acgctaaata tgccacttgg gataatttca ccggaaaacc ggttgacggt
2100tatgaagtaa atcgcattgt agggacatac gagttggctg aatcgctttt gaaggcaaaa
2160gaactggctg ctacccaagg gtacggattg cttctatggg acggttaccg tcctaagcgt
2220gctgtaaact gttttatgca atgggctgca cagccggaaa ataacctgac aaaggaaagt
2280tattatccca atattgaccg aactgagatg atttcaaaag gatacgtggc ttcaaaatca
2340agccatagcc gcggcagtgc cattgatctt acgctttatc gattagacac gggtgagctt
2400gtaccaatgg ggagccgatt tgattttatg gatgaacgct ctcatcatgc ggcaaatgga
2460atatcatgca atgaagcgca aaatcgcaga cgtttgcgct ccatcatgga aaacagtggg
2520tttgaagcat atagcctcga atggtggcac tatgtattaa gagacgaacc ataccccaat
2580agctattttg atttccccgt taaataa
26071711288DNAPseudomonas aeruginosa 171ggatccatca ggcaacgacg ggctgctgcc
ggccatcagc ggacgcaggg aggactttcc 60gcaaccggcc gttcgatgcg gcaccgatgg
ccttcgcgca ggggtagtga atccgccagg 120attgacttgc gctgccctac ctctcactag
tgaggggcgg cagcgcatca agcggtgagc 180gcactccggc accgccaact ttcagcacat
gcgtgtaaat catcgtcgta gagacgtcgg 240aatggccgag cagatcctgc acggttcgaa
tgtcgtaacc gctgcggagc aaggccgtcg 300cgaacgagtg gcggagggtg tgcggtgtgg
cgggcttcgt gatgcctgct tgttctacgg 360cacgtttgaa ggcgcgctga aaggtctggt
catacatgtg atggcgacgc acgacaccgc 420tccgtggatc ggtcgaatgc gtgtgctgcg
caaaaaccca gaaccacggc caggaatgcc 480cggcgcgcgg atacttccgc tcaagggcgt
cgggaagcgc aacgccgctg cggccctcgg 540cctggtcctt cagccaccat gcccgtgcac
gcgacagctg ctcgcgcagg ctgggtgcca 600agctctcggg taacatcaag gcccgatcct
tggagccctt gccctcccgc acgatgatcg 660tgccgtgatc gaaatccaga tccttgaccc
gcagttgcaa accctcactg atccgcatgc 720ccgttccata cagaagctgg gcgaacaaac
gatgctcgcc ttccagaaaa ccgaggatgc 780gaaccacttc atccggggtc agcaccaccg
gcaagcgccg cgacggccga ggtcttccga 840tctcctgaag ccagggcaga tccgtgcaca
gcaccttgcc gtagaagaac agcaaggccg 900ccaatgcctg acgatgcgtg gagaccgaaa
ccttgcgctc gttcgccagc caggacagaa 960atgcctcgac ttcgctgctg cccaaggttg
ccgggtgacg cacaccgtgg aaacggatga 1020aggcacgaac ccagtggaca taagcctgtt
cggttcgtaa gctgtaatgc aagtagcgta 1080tgcgctcacg caactggtcc agaaccttga
ccgaacgcag cggtggtaac ggcgcagtgg 1140cggttttcat ggcttgttat gactgttttt
ttgtacagtc tatgcctcgg gcatccaagc 1200agcaagcgcg ttacgccgtg ggtcgatgtt
tgatgttatg gagcagcaac gatgttacgc 1260agcagggcag tcgccctaaa acaaagtt
12881721650DNAPseudomonas aeruginosa
172gttagatgca ctaagcacat aattgctcac agccaaacta tcaggtcaag tctgctttta
60ttatttttaa gcgtgcataa taagccctac acaaattggg agatatatca tgaaaggctg
120gctttttctt gttatcgcaa tagttggcga agtaatcgca acatccgcat taaaatctag
180cgagggcttt actaagcttg ccccttccgc cgttgtcata atcggttatg gcatcgcatt
240ttattttctt tctctggttc tgaaatccat ccctgtcggt gttgcttatg cagtctggtc
300gggactcggc gtcgtcataa ttacagccat tgcctggttg cttcatgggc aaaagcttga
360tgcgtggggc tttgtaggta tggggctcat aattgctgcc tttttgctcg cccgatcccc
420atcgtggaag tcgctgcgga ggccgacgcc atggtgacgg tgttcggcat tctgaatctc
480accgaggact ccttcttcga tgagagccgg cggctagacc ccgccggcgc tgtcaccgcg
540gcgatcgaaa tgctgcgagt cggatcagac gtcgtggatg tcggaccggc cgccagccat
600ccggacgcga ggcctgtatc gccggccgat gagatcagac gtattgcgcc gctcttagac
660gccctgtccg atcagatgca ccgtgtttca atcgacagct tccaaccgga aacccagcgc
720tatgcgctca agcgcggcgt gggctacctg aacgatatcc aaggatttcc tgaccctgcg
780ctctatcccg atattgctga ggcggactgc aggctggtgg ttatgcactc agcgcagcgg
840gatggcatcg ccacccgcac cggtcacctt cgacccgaag acgcgctcga cgagattgtg
900cggttcttcg aggcgcgggt ttccgccttg cgacggagcg gggtcgctgc cgaccggctc
960atcctcgatc cggggatggg atttttcttg agccccgcac cggaaacatc gctgcacgtg
1020ctgtcgaacc ttcaaaagct gaagtcggcg ttggggcttc cgctattggt ctcggtgtcg
1080cggaaatcct tcttgggcgc caccgttggc cttcctgtaa aggatctggg tccagcgagc
1140cttgcggcgg aacttcacgc gatcggcaat ggcgctgact acgtccgcac ccacgcgcct
1200ggagatctgc gaagcgcaat caccttctcg gaaaccctcg cgaaatttcg cagtcgcgac
1260gccagagacc gagggttaga tcatgcctag cattcacctt ccggccgccc gctagcggac
1320cctggtcagg ttccgcgaag gtgggcgcag acatgctggg ctcgtcagga tcaaactgca
1380ctatgaggcg gcggttcata ccgcgccagg ggagcgaatg gacagcgagg agcctccgaa
1440cgttcgggtc gcctgctcgg gtgatatcga cgaggttgtg cggctgatgc acgacgctgc
1500ggcgtggatg tccgccaagg gaacgcccgc ctgggacgtc gcgcggatcg accggacatt
1560cgcggagacc ttcgtcctga gatccgagct cctagtcgcg agttgcagcg acggcatcgt
1620cggctgttgc accttgtcgg ccgaggatcc
1650173630DNAEnterococcus faecium 173atgggtccga atcctatgaa aatgtatcct
atagaaggaa acaaatcagt acaatttatc 60aaacctattt tagaaaaatt agaaaatgtt
gaggttggag aatactcata ttatgattct 120aagaatggag aaacttttga taagcaaatt
ttatatcatt atccaatctt aaacgataag 180ttaaaaatag gtaaattttg ctcaatagga
ccaggtgtaa ctattattat gaatggagca 240aatcatagaa tggatggctc aacatatcca
tttaatttat ttggtaatgg atgggagaaa 300catatgccaa aattagatca actacctatt
aagggggata caataatagg taatgatgta 360tggataggaa aagatgttgt aattatgcca
ggagtaaaaa tcggggatgg tgcaatagta 420gctgctaatt ctgttgttgt aaaagatata
gcgccataca tgttagctgg aggaaatcct 480gctaacgaaa taaaacaaag atttgatcaa
gatacaataa atcagctgct tgatataaaa 540tggtggaatt ggccaataga cattattaat
gagaatatag ataaaattct tgataatagc 600atcattagag aagtcatatg gaaaaaatga
6301741440DNAEnterococcus faecalis
174atgaatatag ttgaaaatga aatatgtata agaactttaa tagatgatga ttttcctttg
60atgttaaaat ggttaactga tgaaagagta ttagaatttt atggtggtag agataaaaaa
120tatacattag aatcattaaa aaaacattat acagagcctt gggaagatga agtttttaga
180gtaattattg aatataacaa tgttcctatt ggatatggac aaatatataa aatgtatgat
240gagttatata ctgattatca ttatccaaaa actgatgaga tagtctatgg tatggatcaa
300tttataggag agccaaatta ttggagtaaa ggaattggta caagatatat taaattgatt
360tttgaatttt tgaaaaaaga aagaaatgct aatgcagtta ttttagaccc tcataaaaat
420aatccaagag caataagggc ataccaaaaa tctggtttta gaattattga agatttgcca
480gaacatgaat tacacgaggg caaaaaagaa gattgttatt taatggaata tagatatgat
540gataatgcca caaatgttaa ggcaatgaaa tatttaattg agcattactt tgataatttc
600aaagtagata gtattgaaat aatcggtagt ggttatgata gtgtggcata tttagttaat
660aatgaataca tttttaaaac aaaatttagt actaataaga aaaaaggtta tgcaaaagaa
720aaagcaatat ataatttttt aaatacaaat ttagaaacta atgtaaaaat tcctaatatt
780gaatattcgt atattagtga tgaattatct atactaggtt ataaagaaat taaaggaact
840tttttaacac cagaaattta ttctactatg tcagaagaag aacaaaattt gttaaaacga
900gatattgcca gttttttaag acaaatgcac ggtttagatt atacagatat tagtgaatgt
960actattgata ataaacaaaa tgtattagaa gagtatatat tgttgcgtga aactatttat
1020aatgatttaa ctgatataga aaaagattat atagaaagtt ttatggaaag actaaatgca
1080acaacagttt ttgagggtaa aaagtgttta tgccataatg attttagttg taatcatcta
1140ttgttagatg gcaataatag attaactgga ataattgatt ttggagattc tggaattata
1200gatgaatatt gtgattttat atacttactt gaagatagtg aagaagaaat aggaacaaat
1260tttggagaag atatattaag aatgtatgga aatatagata ttgagaaagc aaaagaatat
1320caagatatag ttgaagaata ttatcctatt gaaactattg tttatggaat taaaaatatt
1380aaacaggaat ttatcgaaaa tggtagaaaa gaaatttata aaaggactta taaagattga
1440175660DNAStaphylococcus aureus 175ttgaatttaa acaatgacca tggacctgat
cccgaaaata ttttaccgat aaaagggaat 60cggaatcttc aatttataaa acctactata
acgaacgaaa acattttggt gggggaatat 120tcttattatg atagtaagcg aggagaatcc
tttgaagatc aagtcttata tcattatgaa 180gtgattggag ataagttgat tataggaaga
ttttgttcaa ttggtcccgg aacaacattt 240attatgaatg gtgcaaacca tcggatggat
ggatcaacat atccttttca tctattcagg 300atgggttggg agaagtatat gccttcctta
aaagatcttc ccttgaaagg ggacattgaa 360attggaaatg atgtatggat aggtagagat
gtaaccatta tgcctggggt gaaaattggg 420gacggggcaa tcattgctgc agaagctgtt
gtcacaaaga atgttgctcc ctattctatt 480gtcggtggaa atcccttaaa atttataaga
aaaaggtttt ctgatggagt tatcgaagaa 540tggttagctt tacaatggtg gaatttagat
atgaaaatta ttaatgaaaa tcttcccttc 600ataataaatg gagatatcga aatgctgaag
agaaaaagaa aacttctaga tgacacttga 6601761569DNAStaphylococcus aureus
176atgaaaataa tgttagaggg acttaatata aaacattatg ttcaagatcg tttattgttg
60aacataaatc gcctaaagat ttatcagaat gatcgtattg gtttaattgg taaaaatgga
120agtggaaaaa caacgttact tcacatatta tataaaaaaa ttgtgcctga agaaggtatt
180gtaaaacaat tttcacattg tgaacttatt cctcaattga agctcataga atcaactaaa
240agtggtggtg aagtaacacg aaactatatt cggcaagcgc ttgataaaaa tccagaactg
300ctattagcag atgaaccaac aactaactta gataataact atatagaaaa attagaacag
360gatttaaaaa attggcatgg agcatttatt atagtttcac atgatcgcgc ttttttagat
420aacttgtgta ctactatatg ggaaattgac gagggaagaa taactgaata taaggggaat
480tatagtaact atgttgaaca aaaagaatta gaaagacatc gagaagaatt agaatatgaa
540aaatatgaaa aagaaaagaa acgattggaa aaagctataa atataaaaga acagaaagct
600caacgagcaa ctaaaaaacc gaaaaactta agtttatctg aaggcaaaat aaaaggagca
660aagccatact ttgcaggtaa gcaaaagaag ttacgaaaaa ctgtaaaatc tctagaaacc
720agactagaaa aacttgaaag cgtcgaaaag agaaacgaac ttcctccact taaaatggat
780ttagtgaact tagaaagtgt aaaaaataga actataatac gtggtgaaga tgtctcgggt
840acaattgaag gacgggtatt gtggaaagca aaaagtttta gtattcgcgg aggagacaag
900atggcaatta tcggatctaa tggtacagga aagacaacgt ttattaaaaa aattgtgcat
960gggaatcctg gtatttcatt atcgccatct gtcaaaatcg gttattttag ccaaaaaata
1020gatacattag aattagataa gagcatttta gaaaatgttc aatcttcttc acaacaaaat
1080gaaactctta ttcgaactat tctagctaga atgcattttt ttagagatga tgtttataaa
1140ccaataagtg tcttaagtgg tggagagcga gttaaagtag cactaactaa agtattctta
1200agtgaagtta atacgttggt actagatgaa ccaacaaact ttcttgatat ggaagctata
1260gaggcgtttg aatctttgtt aaaggaatat aatggcagta taatctttgt atctcacgat
1320cgtaaattta tcgaaaaagt agccactcga ataatgacaa ttgataataa agaaataaaa
1380atatttgatg gcacatatga acaatttaaa caagctgaaa agccaacaag gaatattaaa
1440gaagataaaa aacttttact tgagacaaaa attacagaag tactcagtcg attgagtatt
1500gaaccttcgg aagaattaga acaagagttt caaaacttaa taaatgaaaa aagaaatttg
1560gataaataa
15691771467DNAStaphylococcus epidermidis 177atggaacaat atacaattaa
atttaaccaa atcaatcata aattgacaga tttacgatca 60cttaacatcg atcatcttta
tgcttaccaa tttgaaaaaa tagcacttat tgggggtaat 120ggtactggta aaaccacatt
actaaatatg attgctcaaa aaacaaaacc agaatctgga 180acagttgaaa cgaatggcga
aattcaatat tttgaacagc ttaacatgga tgtggaaaat 240gattttaaca cgttagacgg
tagtttaatg agtgaactcc atatacctat gcatacaacc 300gacagtatga gtggtggtga
aaaagcaaaa tataaattac gtaatgtcat atcaaattat 360agtccgatat tacttttaga
tgaacctaca aatcacttgg ataaaattgg taaagattat 420ctgaataata ttttaaaata
ttactatggt actttaatta tagtaagtca cgatagagca 480cttatagacc aaattgctga
cacaatttgg gatatacaag aagatggcac aataagagtg 540tttaaaggta attacacaca
gtatcaaaat caatatgaac aagaacagtt agaacaacaa 600cgtaaatatg aacagtatat
aagtgaaaaa caaagattgt cccaagccag taaagctaaa 660cgaaatcaag cgcaacaaat
ggcacaagca tcatcaaaac aaaaaaataa aagtatagca 720ccagatcgtt taagtgcatc
aaaagaaaaa ggcacggttg agaaggctgc tcaaaaacaa 780gctaagcata ttgaaaaaag
aatggaacat ttggaagaag ttgaaaaacc acaaagttat 840catgaattca attttccaca
aaataaaatt tatgatatcc ataataatta tccaatcatt 900gcacaaaatc taacattggt
taaaggaagt caaaaactgc taacacaagt acgattccaa 960ataccatatg gcaaaaatat
agcgctcgta ggtgcaaatg gtgtaggtaa gacaacttta 1020cttgaagcta tttaccacca
aatagaggga attgattgtt ctcctaaagt gcaaatggca 1080tactatcgtc aacttgctta
tgaagacatg cgtgacgttt cattattgca atatttaatg 1140gatgaaacgg attcatcaga
atcattcagt agagctattt taaataactt gggtttaaat 1200gaagcacttg agcgttcttg
taatgttttg agtggtgggg aaagaacgaa attatcgtta 1260gcagtattat tttcaacgaa
agcgaatatg ttaattttgg atgaaccaac taatttttta 1320gatattaaaa cattagaagc
attagaaatg tttatgaata aatatcctgg aatcattttg 1380tttacatcac atgatacaag
gtttgttaaa catgtatcag ataaaaaatg ggaattaaca 1440ggacaatcta ttcatgatat
aacttaa 1467
User Contributions:
Comment about this patent or add new information about this topic: