Top Document: [sci.astro] Time (Astronomy Frequently Asked Questions) (3/9) Previous Document: C.03 How do I compute astronomical phenomena for my location? Next Document: C.05 Was 2000 a leap year? See reader questions & answers on this topic! - Help others by sharing your knowledge William Hamblen <william.hamblen@nashville.com> It's the number of days since noon GMT 4713 BC January 1. What's so special about this date? Joseph Justus Scaliger (1540--1609) was a noted Italian-French philologist and historian who was interested in chronology and reconciling the dates in historical documents. Before the western civil calendar was adopted by most countries, each little city or principality reckoned dates in its own fashion, using descriptions like "the 5th year of the Great Poo-bah Magnaminus." Scaliger wanted to make sense out of these disparate references so he invented his own era and reckoned dates by counting days. He started with 4713 BC January 1 because that was when solar cycle of 28 years (when the days of the week and the days of the month in the Julian calendar coincide again), the Metonic cycle of 19 years (because 19 solar years are roughly equal to 235 lunar months) and the Roman indiction of 15 years (decreed by the Emperor Constantine) all coincide. There was no recorded history as old as 4713 BC known in Scaliger's day, so it had the advantage of avoiding negative dates. Joseph Justus's father was Julius Caesar Scaliger, which might be why he called it the Julian Cycle. Astronomers adopted the Julian cycle to avoid having to remember "30 days hath September ...." For reference, Julian day 2450000 began at noon on 1995 October 9. Because Julian dates are so large, astronomers often make use of a "modified Julian date"; MJD = JD - 2400000.5. (Though, sometimes they're sloppy and subtract 2400000 instead.) User Contributions:Comment about this article, ask questions, or add new information about this topic:Top Document: [sci.astro] Time (Astronomy Frequently Asked Questions) (3/9) Previous Document: C.03 How do I compute astronomical phenomena for my location? Next Document: C.05 Was 2000 a leap year? Part0 - Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Part8 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: jlazio@patriot.net
Last Update March 27 2014 @ 02:11 PM
|
with stars, then every direction you looked would eventually end on
the surface of a star, and the whole sky would be as bright as the
surface of the Sun.
Why would anyone assume this? Certainly, we have directions where we look that are dark because something that does not emit light (is not a star) is between us and the light. A close example is in our own solar system. When we look at the Sun (a star) during a solar eclipse the Moon blocks the light. When we look at the inner planets of our solar system (Mercury and Venus) as they pass between us and the Sun, do we not get the same effect, i.e. in the direction of the planet we see no light from the Sun? Those planets simply look like dark spots on the Sun.
Olbers' paradox seems to assume that only stars exist in the universe, but what about the planets? Aren't there more planets than stars, thus more obstructions to light than sources of light?
What may be more interesting is why can we see certain stars seemingly continuously. Are there no planets or other obstructions between them and us? Or is the twinkle in stars just caused by the movement of obstructions across the path of light between the stars and us? I was always told the twinkle defines a star while the steady light reflected by our planets defines a planet. Is that because the planets of our solar system don't have the obstructions between Earth and them to cause a twinkle effect?
9-14-2024 KP